Initial Maclaurin Coefficients Bounds for New Subclasses of Bi-univalent Functions

Basem Aref Frasina,*, Tariq Al-Hawaryb

aDepartment of Mathematics, Al al-Bayt University, Mafraq, Jordan
bDepartment of Applied Science, Ajloun College, Al-Balqa Applied University, Ajloun 26816, Jordan.

Abstract
In this work we introduce the subclasses $\mathcal{L}_2(\theta,\alpha)$ and $\mathcal{L}_2(\theta,\gamma)$ of bi-univalent functions. Furthermore, we obtain coefficient bounds involving the Taylor-Maclaurin coefficients $|a_2|$ and $|a_3|$ for functions belonging to these classes. The results presented in this paper would generalize those in related works of several earlier authors.

Keywords: Analytic and univalent functions, Bi-univalent functions, Starlike and convex functions, Coefficients bounds.

2010 MSC: 30C45, 30C50.

1. Introduction and preliminaries

Let \mathcal{A} be the class of functions f which are analytic in the open unit disk $\mathcal{U} = \{z : |z| < 1\}$ with the conditions $f(0) = 0$ and $f'(0) = 1$ and having form

$$f(z) = z + a_2z^2 + a_3z^3 + \cdots \quad (z \in \mathcal{U}).$$

Further, by \mathcal{S} we will denote the class of all functions in \mathcal{A} which are univalent in \mathcal{U}.

For each θ, $-\pi < \theta \leq \pi$, Silverman and Silvia (Silverman & Silvia, 1999) introduced the class

$$\mathcal{L}(\theta) = \left\{ f \in \mathcal{A} : \text{Re} \left(f'(z) + \frac{1}{2} e^{i\theta} z f''(z) \right) > 0, \quad z \in \mathcal{U} \right\}$$

and they proved that $\mathcal{L}(\theta) \subset \mathcal{L}(\pi)$, where $\mathcal{L}(\pi)$ is the well known class \mathcal{R} that consists of univalent functions in whose derivatives have positive real part in \mathcal{U} (Alexander, 1915). The class $\mathcal{L}(0)$

*Corresponding author

Email addresses: bafrasin@yahoo.com (Basem Aref Frasin), tariq_amh@yahoo.com (Tariq Al-Hawary)
was studied by Singh and Singh (Singh & Singh, 1989), Lewandowski et al. (Lewandowski et al., 1976), Chichra (Chichra, 1977), and Silverman (Silverman, 1994).

It is well known that every function \(f \in S \) has an inverse \(f^{-1} \), defined by
\[
f^{-1}(f(z)) = z \quad (z \in U)
\]
and
\[
f(f^{-1}(w)) = w \quad (|w| < r_0(f); \ r_0(f) \geq \frac{1}{4})
\]
where
\[
f^{-1}(w) = w - a_2w^2 + (2a_2^2 - a_3)w^3 - (5a_2^3 - 5a_2a_3 + a_4)w^4 + \cdots.
\]

A function \(f \in A \) is said to be bi-univalent in \(U \) if both \(f(z) \) and \(f^{-1}(z) \) are univalent in \(U \).

Let \(\Sigma \) denote the class of bi-univalent functions in \(U \) given by (1.1). For a brief history and interesting examples in the class \(\Sigma \), see (Srivastava et al., 2010).

Brannan and Taha (Brannan & Taha, 1988) (see also (Taha, 1981)) introduced certain subclasses of the bi-univalent function class \(\Sigma \) similar to the familiar subclasses \(S^\alpha \) and \(K(\alpha) \) of starlike and convex functions of order \(\alpha \) \((0 \leq \alpha < 1)\), respectively (see (Brannan & Taha, 1988)).

Thus, following Brannan and Taha (Brannan & Taha, 1988) (see also (Taha, 1981)), a function \(f \in A \) is in the class \(S^\alpha \Sigma \) \([\alpha]\) of strongly bi-starlike functions of order \(\alpha \) \((0 < \alpha \leq 1)\) if each of the following conditions is satisfied:
\[
f \in \Sigma \text{ and } \left| \arg \left(\frac{zf'(z)}{f(z)} \right) \right| < \frac{\alpha \pi}{2} \quad (0 < \alpha \leq 1, \ z \in U)
\]
and
\[
\left| \arg \left(\frac{wg'(w)}{g(w)} \right) \right| < \frac{\alpha \pi}{2} \quad (0 < \alpha \leq 1, \ w \in U),
\]
where \(g \) is the extension of \(f^{-1} \) to \(U \). The classes \(S^\alpha_2(\alpha) \) and \(K_2(\alpha) \) of bi-starlike functions of order \(\alpha \) and bi-convex functions of order \(\alpha \), corresponding (respectively) to the function classes \(S^\alpha \) and \(K(\alpha) \), were also introduced analogously. For each of the function classes \(S^\alpha_2(\alpha) \) and \(K_2(\alpha) \), they found non-sharp estimates on the first two Taylor–Maclaurin coefficients \(|a_2|\) and \(|a_3|\) (for details, see (Brannan & Taha, 1988; Taha, 1981)).

Recently, Srivastava et al. (Srivastava et al., 2010), Frasin (Frasin, 2014), Frasin and Aouf (Frasin & Aouf, 2011), Goyal and Goswami (Goyal & P.Goswami, 2012), Li and Wang (Li & Wang, 2012), Siregar and Raman (Siregar & Raman, 2012) and Caglar et al.(Caglar et al., 2012) introduced new subclasses of bi-univalent functions and found estimates on the coefficients \(|a_2|\) and \(|a_3|\) for functions in these classes.

The object of the present paper is to introduce two new subclasses of the function class \(\Sigma \) and find estimates on the coefficients \(|a_2|\) and \(|a_3|\) for functions in these new subclasses of the function class \(\Sigma \).

In order to establish our main results, we shall require the following lemma:
Lemma 1. (Pommerenke, 1975) If \(p \in \mathcal{P} \), then \(|c_k| \leq 2 \) for each \(k \), where \(\mathcal{P} \) is the family of all functions \(p \) analytic in \(\mathcal{U} \) for which
\[
\text{Re}(p(z)) > 0, \quad p(z) = 1 + c_1 z + c_2 z^2 + \cdots \quad (z \in \mathcal{U}).
\]

2. Coefficient bounds for the function class \(L_{\Sigma}(\theta, \alpha) \)

We now introduce the subclass \(L_{\Sigma}(\theta, \alpha) \) of the functions in the class \(\mathcal{A} \) as follows.

Definition 2.1. A function \(f(z) \) given by (1.1) is said to be in the class \(L_{\Sigma}(\theta, \alpha) \) where \(0 < \alpha \leq 1 \) and \(\theta \in (-\pi, \pi] \), if the following conditions are satisfied:
\[
f \in \Sigma \text{ and } \left| \arg \left(f'(z) + \frac{1 + e^{i\theta}}{2}zf''(z) \right) \right| < \frac{\alpha \pi}{2} \quad (z \in \mathcal{U}) \quad (2.1)
\]
and
\[
\left| \arg \left(g'(w) + \frac{1 + e^{i\theta}}{2}wg''(w) \right) \right| < \frac{\alpha \pi}{2} \quad (w \in \mathcal{U}), \quad (2.2)
\]
where the function \(g \) is given by
\[
g(w) = w - a_2 w^2 + (2a_2^2 - a_3)w^3 - (5a_2^3 - 5a_2 a_3 + a_4)w^4 + \cdots. \quad (2.3)
\]

We first state and prove the following result.

Theorem 1. Let \(f(z) \) given by (1.1) be in the function class \(L_{\Sigma}(\theta, \alpha) \) where \(0 < \alpha \leq 1 \) and \(\theta \in (-\pi, \pi] \). Then
\[
|a_2| \leq \frac{2\alpha}{(3\alpha + 9 + (1 - \alpha)\cos 2\theta + 6\cos \theta)^2 + ((1 - \alpha)\sin 2\theta + 6\sin \theta)^2}^{1/4} \quad (2.4)
\]
and
\[
|a_3| \leq \frac{2\alpha^2}{5 + 3\cos \theta} + \frac{2\alpha}{3 \sqrt{5 + 4\cos \theta}}. \quad (2.5)
\]

Proof. It follows from (2.1) and (2.2) that
\[
f''(z) + \left(\frac{1 + e^{i\theta}}{2} \right)zf'''(z) = [p(z)]^\alpha \quad (2.6)
\]
and
\[
g'(w) + \left(\frac{1 + e^{i\theta}}{2} \right)wg''(w) = [q(w)]^\alpha \quad (2.7)
\]
where \(p(z) \) and \(q(w) \) are in \(\mathcal{P} \) and have the forms
\[
p(z) = 1 + p_1 z + p_2 z^2 + p_3 z^3 + \cdots \quad (2.8)
\]
and
\[q(w) = 1 + q_1 w + q_2 w^2 + q_3 w^3 + \cdots. \]
(2.9)
Now, equating the coefficients in (2.6) and (2.7), we get
\[
(3 + e^{i \theta}) a_2 = \alpha p_1,
\]
(2.10)
\[
3(2 + e^{i \theta}) a_3 = \alpha p_2 + \frac{\alpha(\alpha - 1)}{2} p_1^2,
\]
(2.11)
\[-(3 + e^{i \theta}) a_2 = \alpha q_1,
\]
(2.12)
and
\[
3(2 + e^{i \theta}) (2a_2 - a_3) = \alpha q_2 + \frac{\alpha(\alpha - 1)}{2} q_1^2.
\]
(2.13)
From (2.10) and (2.12), we get
\[
p_1 = -q_1
\]
(2.14)
and
\[
2(3 + e^{i \theta}) a_2^2 = \alpha^2 (p_1^2 + q_1^2).
\]
(2.15)
Now from (2.11), (2.13) and (2.15), we obtain
\[
6(2 + e^{i \theta}) a_2^2 = \alpha (p_2 + q_2) + \frac{\alpha(\alpha - 1)}{2} (p_1^2 + q_1^2)
= \alpha (p_2 + q_2) + \frac{\alpha(\alpha - 1)(3 + e^{i \theta})^2}{\alpha} a_2^2.
\]
Thus
\[
a_2^2 = \frac{\alpha^2 (p_2 + q_2)}{6 \alpha (2 + e^{i \theta}) - (\alpha - 1)(3 + e^{i \theta})^2}
\]
that is
\[
|a_2^2| = \frac{\alpha^2 |p_2 + q_2|}{|6 \alpha (2 + e^{i \theta}) - (\alpha - 1)(3 + e^{i \theta})^2|}.
\]
Applying Lemma 1 for the coefficients \(p_2 \) and \(q_2 \), we have
\[
|a_2| \leq \frac{2 \alpha}{[(3 \alpha + 9 + (1 - \alpha) \cos 2 \theta + 6 \cos \theta)^2 + ((1 - \alpha) \sin 2 \theta + 6 \sin \theta)^2]^{1/4}}.
\]
This gives the bound on \(|a_2| \) as asserted in (2.4).
Next, in order to find the bound on \(|a_3| \), by subtracting (2.13) from (2.11), we get
\[
6(2 + e^{i \theta}) a_3 - 6(2 + e^{i \theta}) a_2^2 = \alpha p_2 + \frac{\alpha(\alpha - 1)}{2} p_1^2 - (\alpha q_2 + \frac{\alpha(\alpha - 1)}{2} q_1^2).
\]
(2.16)
Upon substituting the value of \(a_2^2 \) from (2.15) and observing that \(p_1^2 = q_1^2 \), it follows that
\[
a_3 = \frac{\alpha^2 p_1^2}{(3 + e^{i \theta})^2} + \frac{\alpha (p_2 - q_2)}{6(2 + e^{i \theta})}.
\]
Applying Lemma 1 once again for the coefficients p_1, p_2, q_1 and q_2, we readily get

$$|a_3| \leq \frac{2\alpha^2}{5 + 3\cos \theta} + \frac{2\alpha}{3 \sqrt{5 + 4\cos \theta}},$$

which completes the proof of Theorem 1.

Choosing $\theta = \pi$ in Theorem 1, we obtain the following particular case due to Srivastava et al. (Srivastava et al., 2010):

Corollary 2.1. (Srivastava et al., 2010) Let $f(z)$ given by (1.1) be in the function class $L_\Sigma(\pi, \alpha)$; $0 < \alpha \leq 1$. Then

$$|a_2| \leq \alpha \sqrt{\frac{2}{\alpha + 1}} \quad (2.17)$$

and

$$|a_3| \leq \frac{\alpha(3\alpha + 2)}{3} \quad (2.18)$$

Putting $\theta = 0$ in Theorem 1, we obtain the following particular case due to Frasin (Frasin, 2014):

Corollary 2.2. (Frasin, 2014) Let $f(z)$ given by (1.1) be in the function class $L_\Sigma(0, \alpha)$, $0 < \alpha \leq 1$. Then

$$|a_2| \leq \alpha \sqrt{\frac{2}{\alpha + 8}} \quad (2.19)$$

and

$$|a_3| \leq \frac{9\alpha^2 + 8\alpha}{36} \quad (2.20)$$

3. **Coefficient bounds for the function class $L_\Sigma(\theta, \gamma)$**

Definition 3.1. A function $f(z)$ given by (1.1) is said to be in the class $L_\Sigma(\theta, \gamma)$ where $0 \leq \gamma < 1$, $\theta \in (-\pi, \pi]$, if the following conditions are satisfied:

$$f \in \Sigma \text{ and } \Re\left(\frac{f'(z)}{2} + \frac{1 + e^{i\theta}}{2}zf''(z)\right) > \gamma \quad (z \in \mathcal{U}) \quad (3.1)$$

and

$$\Re\left(\frac{g'(w)}{2} + \frac{1 + e^{i\theta}}{2}wg''(w)\right) > \gamma \quad (w \in \mathcal{U}), \quad (3.2)$$

where the function g is given by (2.3).
Theorem 2. Let \(f(z) \) given by (1.1) be in the class \(\mathcal{L}_\Sigma(\theta, \gamma) \), where \(0 \leq \gamma < 1, \theta \in (-\pi, \pi] \). Then

\[
|a_2| \leq \sqrt{\frac{4(1 - \gamma)}{6 \sqrt{5 + 4 \cos \theta}}}
\]

and

\[
|a_3| \leq \frac{2(1 - \gamma)^2}{5 + 3 \cos \theta} + \frac{2(1 - \gamma)}{3 \sqrt{5 + 4 \cos \theta}}.
\]

Proof. It follows from (3.1) and (3.2) that there exist \(p \) and \(q \in P \) such that

\[
f'(z) + \left(\frac{1 + e^{i\theta}}{2} \right) z f''(z) = \gamma + (1 - \gamma)p(z)
\]

and

\[
g'(w) + \left(\frac{1 + e^{i\theta}}{2} \right) wg''(w) = \gamma + (1 - \gamma)q(w)
\]

where \(p(z) \) and \(q(w) \) have the forms (2.8) and (2.9), respectively. Equating coefficients in (3.5) and (3.6) yields

\[
(3 + e^{i\theta})a_2 = (1 - \gamma)p_1,
\]

\[
3(2 + e^{i\theta})a_3 = (1 - \gamma)p_2,
\]

\[
-(3 + e^{i\theta})a_2 = (1 - \gamma)q_1
\]

and

\[
3(2 + e^{i\theta})(2a_2^2 - a_3) = (1 - \gamma)q_2
\]

From (3.7) and (3.9), we get

\[
p_1 = -q_1
\]

and

\[
2(3 + e^{i\theta})^2a_2^2 = (1 - \gamma)^2(p_1^2 + q_1^2).
\]

Also, from (3.8) and (3.10), we find that

\[
6(2 + e^{i\theta})a_2^2 = (1 - \gamma)(p_2 + q_2).
\]

Thus, we have

\[
|a_2^2| \leq \frac{(1 - \gamma)}{6 |2 + e^{i\theta}|(|p_2| + |q_2|)}
\]

\[
\leq \frac{4(1 - \gamma)}{6 \sqrt{5 + 4 \cos \theta}}
\]

which is the bound on \(|a_2| \) as given in (3.3).
Next, in order to find the bound on $|a_3|$, by subtracting (3.10) from (3.8), we get
\[6(2 + e^{i\theta})a_3 - 6(2 + e^{i\theta})a_2^2 = (1 - \gamma)(p_2 - q_2) \]
or, equivalently,
\[a_3 = a_2^2 + \frac{(1 - \gamma)(p_2 - q_2)}{6(2 + e^{i\theta})}. \]

Upon substituting the value of a_2^2 from (3.12), we obtain
\[a_3 = \frac{(1 - \gamma)^2(p_1^2 + q_1^2)}{2(3 + e^{i\theta})^2} + \frac{(1 - \gamma)(p_2 - q_2)}{6(2 + e^{i\theta})}. \]

Applying Lemma 1 for the coefficients p_1, p_2, q_1 and q_2, we readily get
\[|a_3| \leq \frac{2(1 - \gamma)^2}{5 + 3 \cos \theta} + \frac{2(1 - \gamma)}{3 \sqrt{5 + 4 \cos \theta}} \]
which is the bound on $|a_3|$ as asserted in (3.4).

Choosing $\theta = \pi$ in Theorem 2, we obtain the following particular case due to Srivastava et al. (Srivastava et al., 2010):

Corollary 3.1. (Srivastava et al., 2010) Let $f(z)$ given by (1.1) be in the function class $\mathcal{L}_\Sigma(0, \gamma)$, $0 \leq \gamma < 1$. Then
\[|a_2| \leq \sqrt{\frac{2(1 - \gamma)}{3}} \]
and
\[|a_3| \leq \frac{(1 - \gamma)(5 - 3\gamma)}{3}. \] (3.14)

Putting $\theta = 0$ in Theorem 2, we obtain the following particular case due to Frasin (Frasin, 2014):

Corollary 3.2. (Frasin, 2014) Let $f(z)$ given by (1.1) be in the function class $\mathcal{L}_\Sigma(0, \gamma)$, $0 \leq \gamma < 1$. Then
\[|a_2| \leq \frac{1}{3} \sqrt{2(1 - \gamma)} \]
and
\[|a_3| \leq \frac{(1 - \gamma)(9(1 - \gamma) + 8)}{36}. \] (3.16)

Acknowledgments

The authors thank the referee for his valuable suggestions which led to improvement of this study.
References

