

## Theory and Applications of Mathematics & Computer Science

(ISSN 2067-2764, EISSN 2247-6202)
http://www.uav.ro/applications/se/journal/index.php/tamcs

Theory and Applications of Mathematics & Computer Science 9 (1) (2019) 1-7

# On Some Nonuniform Dichotomic Behaviors of Discrete Skew-product Semiflows

Claudia Luminiţa Mihiţa,b,\*

<sup>a</sup>Department of Mathematics, Faculty of Mathematics and Computer Science, West University of Timişoara, V. Pârvan Blv. No. 4, 300223 Timişoara, Romania

#### **Abstract**

In this paper we approach concepts of nonuniform dichotomy for the case of discrete skew-product semiflows. Different characterizations of this properties are given from the point of view of invariant and strongly invariant projector families.

*Keywords:* discrete skew-product semiflow, nonuniform dichotomy, nonuniform exponential dichotomy. 2010 MSC: 34D05, 34D09.

#### 1. Introduction

The (exponential) dichotomy is one of the most representative asymptotic properties studied for discrete dynamical systems in (Alonso *et al.*, 1999), (Babuţia & Megan, 2016), (Crai, 2016), (Elaydi & Janglajew, 1998), (Popa *et al.*, 2012), (Sasu & Sasu, 2013) from various perspectives.

In (Sasu, 2009) is approached the uniform exponential dichotomy for discrete skew-product flows and in (Biriş *et al.*, 2019) the authors investigate a generalization of the uniform exponential dichotomy property (the uniform exponential splitting) for discrete skew-product semiflows. Other significant results for the dichotomic behaviors of skew-product semiflows are obtained in (Biriş & Megan, 2016), (Chow & Leiva, 1996) and (Huy & Phi, 2010).

Regarding the nonuniform dichotomies, M. Megan, B. Sasu and A. L. Sasu ((Megan *et al.*, 2002)) prove interesting results for the nonuniform exponential dichotomy of evolution operators, using admissibility techniques. Also, different concepts of nonuniform exponential dichotomy and nonuniform polynomial dichotomy are studied in (Megan & Stoica, 2010) and (Stoica, 2016).

In this article, the properties of nonuniform dichotomy and nonuniform exponential dichotomy are treated for discrete variational systems, described through discrete skew-product semiflows. We prove criteria for the nonuniform exponential dichotomy, based on some results from (Przyluski & Rolewicz, 1984) and in particular we illustrate the characterizations for the nonuniform dichotomy.

Email address: mihit.claudia@yahoo.com; claudia.mihit@uav.ro (Claudia Luminiţa Mihiţ)

<sup>&</sup>lt;sup>b</sup>Department of Mathematics and Computer Science, Faculty of Exact Sciences, "Aurel Vlaicu" University of Arad, Elena Drăgoi Street no.2, 310330 Arad, Romania.

<sup>\*</sup>Corresponding author

#### 2. Preliminaries

In the following, we denote by  $\Theta$  a metric space, by X a Banach space and by  $\mathcal{B}(X)$  the Banach algebra of all bounded linear operators on X. The norms on X and on  $\mathcal{B}(X)$  will be denoted by  $\|\cdot\|$ . Let I be the identity operator on X and  $\Gamma = \Theta \times X$ .

**Definition 2.1.** A mapping  $S: \mathbb{N} \times \Theta \to \Theta$  is called *discrete semiflow* on  $\Theta$ , if:

- $(ds_1)$   $S(0, \theta) = \theta$ , for all  $\theta \in \Theta$ ;
- $(ds_2)$   $S(m, S(n, \theta)) = S(m + n, \theta)$ , for all  $(m, n, \theta) \in \mathbb{N}^2 \times \Theta$ .

*Example* 1. We consider  $\Theta = \mathbb{N}$  and  $S : \mathbb{N} \times \Theta \to \Theta$ ,  $S(n, \theta) = n + \theta$ . It is immediate to see that S is a discrete semiflow on  $\Theta$ .

**Definition 2.2.** We say that  $C : \mathbb{N} \times \Theta \to \mathcal{B}(X)$  is *discrete cocycle* over the discrete semiflow  $S : \mathbb{N} \times \Theta \to \Theta$  if:

- $(dc_1)$   $C(0, \theta) = I$ , for all  $\theta \in \Theta$ ;
- $(dc_2)$   $C(m, S(n, \theta))C(n, \theta) = C(m + n, \theta)$ , for all  $(m, n, \theta) \in \mathbb{N}^2 \times \Theta$ .

*Example* 2. Let  $U: \{(m,n) \in \mathbb{N}^2 : m \ge n\} \to \mathcal{B}(X)$  be a discrete evolution operator on the Banach space X and  $\Theta = \mathbb{N}$ . Then  $C_U: \mathbb{N} \times \Theta \to \mathcal{B}(X)$ , given by

$$C_U(n, \theta) = U(n + \theta, \theta)$$
, for all  $(n, \theta) \in \mathbb{N} \times \Theta$ 

is a discrete cocycle over the discrete semiflow considered in Example 1.

**Definition 2.3.** The mapping  $\pi : \mathbb{N} \times \Gamma \to \Gamma$ , given by

$$\pi(n, \theta, x) = (S(n, \theta), C(n, \theta)x),$$

where C is a discrete cocycle over a discrete semiflow S, is called discrete skew-product semiflow on  $\Gamma$ .

**Definition 2.4.** A mapping  $P: \Theta \to \mathcal{B}(X)$  is said to be *family of projectors* if:

$$P^2(\theta) = P(\theta)$$
, for all  $\theta \in \Theta$ .

If  $P: \Theta \to \mathcal{B}(X)$  is a family of projectors, then  $Q: \Theta \to \mathcal{B}(X)$ , defined by  $Q(\theta) = I - P(\theta)$  represents the *complementary family of projectors of P*.

**Definition 2.5.** A family of projectors  $P: \Theta \to \mathcal{B}(X)$  is called

• invariant for a discrete skew-product semiflow  $\pi = (S, C)$  if:

$$P(S(n, \theta))C(n, \theta) = C(n, \theta)P(\theta)$$
, for all  $(n, \theta) \in \mathbb{N} \times \Theta$ ;

• *strongly invariant* for a discrete skew-product semiflow  $\pi = (S, C)$  if it is invariant for  $\pi$  and for all  $(n, \theta) \in \mathbb{N} \times \Theta$ , the restriction  $C(n, \theta)$  is an isomorphism from  $Ker\ P(\theta)$  to  $Ker\ P(S(n, \theta))$ .

Remark 1. If  $P: \Theta \to \mathcal{B}(X)$  is a strongly invariant family of projectors for  $\pi = (S, C)$ , then there exists the mapping  $D: \mathbb{N} \times \Theta \to \mathcal{B}(X)$  such that for all  $(n, \theta) \in \mathbb{N} \times \Theta$  the bounded linear operator  $D(n, \theta)$  is an isomorphism from  $Ker\ P(S(n, \theta))$  to  $Ker\ P(\theta)$  and

- (i)  $C(n, \theta)D(n, \theta)Q(S(n, \theta)) = Q(S(n, \theta));$
- (ii)  $D(n,\theta)C(n,\theta)Q(\theta) = Q(\theta)$ ;
- (iii)  $Q(\theta)D(n,\theta)Q(S(n,\theta)) = D(n,\theta)Q(S(n,\theta)),$

for all  $(n, \theta) \in \mathbb{N} \times \Theta$ .

### 3. Nonuniform dichotomic behaviors of discrete skew-product semiflows

Let  $\pi = (S, C)$  be a discrete skew-product semiflow and  $P : \Theta \to \mathcal{B}(X)$  an invariant family of projectors for  $\pi$ .

**Definition 3.1.** The pair  $(\pi, P)$  is called *nonuniformly dichotomic* if there exists a mapping  $N : \Theta \to \mathbb{R}_+^*$  such that:

$$(nd_1) ||C(n,\theta)P(\theta)x|| \le N(\theta)||P(\theta)x||;$$
  

$$(nd_2) ||Q(\theta)x|| \le N(\theta)||C(n,\theta)Q(\theta)x||,$$

for all  $(n, \theta, x) \in \mathbb{N} \times \Gamma$ .

In particular, if N is a constant function, then  $(\pi, P)$  is named *uniformly dichotomic*.

*Remark* 2. The pair  $(\pi, P)$  admits a nonuniform dichotomy if and only if there exists  $N: \Theta \to \mathbb{R}_+^*$  with:

$$(nd'_1) ||C(m+n,\theta)P(\theta)x|| \le N(\theta)||C(n,\theta)P(\theta)x||;$$

$$(nd'_2) ||C(n,\theta)Q(\theta)x|| \le N(\theta)||C(m+n,\theta)Q(\theta)x||,$$

for all  $(m, n, \theta, x) \in \mathbb{N}^2 \times \Gamma$ .

**Definition 3.2.** We say that  $(\pi, P)$  is *nonuniformly exponentially dichotomic* if there exist two functions  $N, \nu : \Theta \to \mathbb{R}_+^*$  such that:

$$(ned_1) ||C(n,\theta)P(\theta)x|| \le N(\theta)e^{-\nu(\theta)n}||P(\theta)x||;$$
  

$$(ned_2) e^{\nu(\theta)n}||Q(\theta)x|| \le N(\theta)||C(n,\theta)Q(\theta)x||,$$

for all  $(n, \theta, x) \in \mathbb{N} \times \Gamma$ .

Remark 3. We observe that, if

- *v* is a constant function, then we have the concept of *nonuniform exponential dichotomy in the classical sense*;
- N and v are constant functions, then obtain the property of uniform exponential dichotomy.

Remark 4. The pair  $(\pi, P)$  has a nonuniform exponential dichotomy if and only if there exist  $N, \nu : \Theta \to \mathbb{R}_+^*$  with:

$$(ned'_1) ||C(m+n,\theta)P(\theta)x|| \le N(\theta)e^{-\nu(\theta)m}||C(n,\theta)P(\theta)x||;$$
  
$$(ned'_2) e^{\nu(\theta)m}||C(n,\theta)Q(\theta)x|| \le N(\theta)||C(m+n,\theta)Q(\theta)x||,$$

for all  $(m, n, \theta, x) \in \mathbb{N}^2 \times \Gamma$ .

Remark 5. If the pair  $(\pi, P)$  admits nonuniform exponential dichotomy, then  $(\pi, P)$  has nonuniform dichotomy.

**Theorem 3.1.** The pair  $(\pi, P)$  is nonuniformly exponentially dichotomic if and only if there exist the functions  $\delta$ ,  $\Delta: \Theta \to \mathbb{R}_+^*$  such that the following conditions hold:

$$\begin{split} &(dned_1) \quad \sum_{k=n}^{+\infty} e^{\delta(\theta)k} \|C(k,\theta)P(\theta)x\| \leq \Delta(\theta) \|P(\theta)x\| \\ &(dned_2) \quad \sum_{k=0}^{n} e^{\delta(S(n,\theta))k} \|C(n-k,S(k,\theta))Q(S(k,\theta))x\| \leq \Delta(S(n,\theta)) \|C(n,S(n,\theta))Q(S(n,\theta))x\|, \end{split}$$

for all  $(n, \theta, x) \in \mathbb{N} \times \Gamma$ .

*Proof.* Necessity. We consider  $\delta, \Delta : \Theta \to \mathbb{R}_+^*$ , with  $\delta(\theta) < \nu(\theta)$  and  $\Delta(\theta) = \frac{N(\theta)}{1 - e^{\delta(\theta) - \nu(\theta)}}$ , for all  $\theta \in \Theta$ . Thus, for all  $(n, \theta, x) \in \mathbb{N} \times \Gamma$  we have:

 $(dned_1)$ 

$$\sum_{k=n}^{+\infty} e^{\delta(\theta)k} \|C(k,\theta)P(\theta)x\| \le N(\theta) \sum_{k=0}^{+\infty} e^{\delta(\theta)k} e^{-\nu(\theta)k} \|P(\theta)x\| =$$

$$= N(\theta) \cdot \frac{1}{1 - e^{\delta(\theta) - \nu(\theta)}} \|P(\theta)x\| = \Delta(\theta) \|P(\theta)x\|;$$

$$(dned_2)$$

$$\sum_{k=0}^{n} e^{\delta(S(n,\theta))k} \|Q(S(n,\theta))C(n-k,S(k,\theta))x\| \le$$

$$\le N(S(n,\theta)) \sum_{k=0}^{n} e^{(\delta(S(n,\theta)) - \nu(S(n,\theta)))k} \|C(k,S(n,\theta))Q(S(n,\theta))C(n-k,S(k,\theta))x\| =$$

$$= N(S(n,\theta)) \sum_{k=0}^{n} e^{(\delta(S(n,\theta)) - \nu(S(n,\theta)))k} \|C(n,S(n,\theta))Q(S(n,\theta))x\| =$$

$$= N(S(n,\theta)) \frac{1 - e^{(\delta(S(n,\theta)) - \nu(S(n,\theta)))(n+1)}}{1 - e^{\delta(S(n,\theta)) - \nu(S(n,\theta))}} \|C(n,S(n,\theta))Q(S(n,\theta))x\| \le$$

$$\le \Delta(S(n,\theta)) \|C(n,S(n,\theta))Q(S(n,\theta))x\|.$$

Sufficiency. Considering k = n in the relations  $(dned_1)$ , respectively  $(dned_2)$ , it follows that

$$e^{\delta(\theta)n} \|C(n,\theta)P(\theta)x\| \le \Delta(\theta) \|P(\theta)x\|,$$

respectively

$$e^{\delta(S(n,\theta))n}||Q(S(n,\theta))x|| \le \Delta(S(n,\theta))||C(n,S(n,\theta))Q(S(n,\theta))x||,$$

for all  $(n, \theta, x) \in \mathbb{N} \times \Gamma$ , which implies that  $(\pi, P)$  has a nonuniform exponential dichotomy.

**Corollary 3.2.** The pair  $(\pi, P)$  is nonuniformly dichotomic if and only if there are  $\delta$ ,  $\Delta: \Theta \to \mathbb{R}_+^*$  such that the conditions  $(dned_1)$  and  $(dned_2)$  from Theorem 3.1 are verified.

*Proof.* It yields from Theorem 3.1 and Remark 5.

 $\Box$ 

**Proposition 1.** Let  $P: \Theta \to \mathcal{B}(X)$  be a strongly invariant family of projectors for  $\pi = (S, C)$ . Then  $(\pi, P)$  is nonuniformly exponentially dichotomic if and only if there are two functions  $N, v: \Theta \to \mathbb{R}_+^*$  such that:

$$(ned_1) ||C(n,\theta)P(\theta)x|| \le N(\theta)e^{-\nu(\theta)n}||P(\theta)x||;$$

$$(ned_2') ||D(n,\theta)Q(S(n,\theta))x|| \le N(\theta)e^{-\nu(\theta)n}||Q(S(n,\theta))x||,$$

for all  $(n, \theta, x) \in \mathbb{N} \times \Gamma$ .

*Proof.* We show that  $(ned'_2)$  is equivalent with  $(ned_2)$ , using the relations from Remark 1. For the implication  $(ned'_2) \Rightarrow (ned_2)$ , we have

$$e^{\nu(\theta)n}||O(\theta)x|| = e^{\nu(\theta)n}||D(n,\theta)C(n,\theta)O(\theta)x|| =$$

$$= e^{\nu(\theta)n} \|D(n,\theta)Q(S(n,\theta))C(n,\theta)x\| \le N(\theta) \|Q(S(n,\theta))C(n,\theta)x\| = N(\theta) \|C(n,\theta)Q(\theta)x\|,$$

for all  $(n, \theta, x) \in \mathbb{N} \times \Gamma$ .

Similarly, for the converse implication  $(ned_2) \Rightarrow (ned'_2)$ , we deduce

$$||D(n,\theta)Q(S(n,\theta))x|| = ||Q(\theta)D(n,\theta)Q(S(n,\theta))x|| \le$$

$$\leq N(\theta)e^{-\nu(\theta)n}||C(n,\theta)Q(\theta)D(n,\theta)Q(S(n,\theta))x|| = N(\theta)e^{-\nu(\theta)n}||Q(S(n,\theta))x||,$$

for all 
$$(n, \theta, x) \in \mathbb{N} \times \Gamma$$
.

**Proposition 2.** Let  $P: \Theta \to \mathcal{B}(X)$  be a strongly invariant family of projectors for  $\pi = (S, C)$ . Then  $(\pi, P)$  admits nonuniform dichotomy if and only if there exists  $N: \Theta \to \mathbb{R}_+^*$  such that:

$$(nd_1) ||C(n,\theta)P(\theta)x|| \le N(\theta)||P(\theta)x||;$$

$$(nd_2') \|D(n,\theta)Q(S(n,\theta))x\| \le N(\theta)\|Q(S(n,\theta))x\|,$$

for all  $(n, \theta, x) \in \mathbb{N} \times \Gamma$ .

*Proof.* It is a consequence of Proposition 1.

**Theorem 3.3.** Let  $P: \Theta \to \mathcal{B}(X)$  be a strongly invariant family of projectors for  $\pi = (S, C)$ . The pair  $(\pi, P)$  is nonuniformly exponentially dichotomic if and only if there exist the functions  $\delta$ ,  $\Delta: \Theta \to \mathbb{R}_+^*$  such that the following conditions are satisfied:

$$(dned_1) \sum_{k=n}^{+\infty} e^{\delta(\theta)k} ||C(k,\theta)P(\theta)x|| \le \Delta(\theta) ||P(\theta)x||$$

$$(dned_2') \sum_{k=0}^{n} e^{\delta(\theta)(n-k)} ||D(n-k,S(k,\theta))Q(S(n,\theta))x|| \le \Delta(\theta) ||Q(S(n,\theta))x||,$$

for all  $(n, \theta, x) \in \mathbb{N} \times \Gamma$ .

*Proof. Necessity.* We consider  $\delta, \Delta : \Theta \to \mathbb{R}_+^*$ , with  $\delta(\theta) < \nu(\theta)$  and  $\Delta(\theta) = \frac{N(\theta)}{1 - e^{\delta(\theta) - \nu(\theta)}}$ , for all  $\theta \in \Theta$ . The condition  $(dned_1)$  follows as in Theorem 3.1.

For  $(dned'_2)$  we use Proposition 1 and we obtain

$$\sum_{k=0}^{n}e^{\delta(\theta)(n-k)}\|D(n-k,S(k,\theta))Q(S(n,\theta))x\|\leq N(\theta)\sum_{k=0}^{n}e^{(\delta(\theta)-\nu(\theta))(n-k)}\|Q(S(n,\theta))x\|\leq N(\theta)\sum_{k=0}^{n}e^{\delta(\theta)(n-k)}\|D(n-k,S(k,\theta))Q(S(n,\theta))x\|\leq N(\theta)\sum_{k=0}^{n}e^{\delta(\theta)(n-k)}\|D(n-k,S(k,\theta))Q(S(n,\theta))x\|\leq N(\theta)\sum_{k=0}^{n}e^{\delta(\theta)(n-k)}\|D(n-k,S(k,\theta))Q(S(n,\theta))x\|\leq N(\theta)\sum_{k=0}^{n}e^{\delta(\theta)(n-k)}\|D(n-k,S(k,\theta))Q(S(n,\theta))x\|\leq N(\theta)\sum_{k=0}^{n}e^{\delta(\theta)(n-k)}\|D(n-k,S(k,\theta))Q(S(n,\theta))x\|$$

$$\leq N(\theta)\frac{e^{\nu(\theta)-\delta(\theta)}-e^{(\delta(\theta)-\nu(\theta))n}}{e^{\nu(\theta)-\delta(\theta)}-1}||Q(S(n,\theta))x||\leq \Delta(\theta)||Q(S(n,\theta))x||,$$

for all  $(n, \theta, x) \in \mathbb{N} \times \Gamma$ .

Sufficiency. Taking k = n in the relation  $(dned_1)$ , it results

$$e^{\delta(\theta)n} ||C(n,\theta)P(\theta)x|| \le \Delta(\theta)||P(\theta)x||$$

and for k = 0 in  $(dned'_2)$  we deduce

$$e^{\delta(\theta)n} \|D(n,\theta)Q(S(n,\theta))x\| \le \Delta(\theta) \|Q(S(n,\theta))x\|,$$

for all  $(n, \theta, x) \in \mathbb{N} \times \Gamma$ .

Hence,  $(\pi, P)$  is nonuniformly exponentially dichotomic.

**Corollary 3.4.** The pair  $(\pi, P)$  admits a nonuniform dichotomy if and only if there are  $\delta$ ,  $\Delta: \Theta \to \mathbb{R}_+^*$  such that the conditions  $(dned_1)$  and  $(dned_2)$  from Theorem 3.3 hold.

*Proof.* It follows from Theorem 3.3 and Remark 5.

#### References

Alonso, A. I., J. Hong and R. Obaya (1999). Exponential dichotomy and trichotomy for difference equations. *Comp. Math. Appl.* **38**, 41–49.

Babuţia, M. G. and M. Megan (2016). Nonuniform exponential dichotomy for discrete dynamical systems in Banach spaces. *Mediterr. J. Math.* **13**, 1653–1667.

Biriş, L. and M. Megan (2016). On a concept of exponential dichotomy for cocycles of linear operators in Banach spaces. *Bull. Math. Soc. Sci. Math. Roumanie* **59(107)**(3), 217–223.

Biriş, L. E., T. Ceauşu and C. L. Mihiţ (2019). On uniform exponential splitting of variational nonautonomous difference equations in Banach spaces. In: *Springer Proceedings in Mathematics & Statistics, Recent Progress in Difference Equations, Discrete Dynamical Systems and Applications (to appear), ISBN 978-3-030-20015-2.* 

Chow, S. N. and H. Leiva (1996). Two definitions of exponential dichotomy for skew-product semiflows in Banach spaces. Proc. Amer. Math. Sc. 124, 1071–1081.

Crai, V. (2016). On the robustness of a concept of dichotomy with different growth rates for linear discrete-time systems in Banach spaces. In: *Proceedings of 11th IEEE International Symposium on Applied Computational Intelligence and Informatics*. pp. 123–130.

Elaydi, S. and K. Janglajew (1998). Dichotomy and trichotomy of difference equations. J. Difference Equ. Appl. 3, 417-448.

Huy, N. T. and H. Phi (2010). Discretized characterizations of exponential dichotomy of linear skew-product semiflows over semiflows. J. Math. Anal. Appl. 362, 46–57.

Megan, M. and C. Stoica (2010). Concepts of dichotomy for skew-evolution semiflows in Banach spaces. *Ann. Acad. Rom. Sci. Ser. Math. Appl.* **2**(2), 125–140.

Megan, M., B. Sasu and A. L. Sasu (2002). On nonuniform exponential dichotomy of evolution operators in Banach spaces. *Integral Equations Operator Theory* **44**, 71–78.

Popa, I. L., M. Megan and T. Ceauşu (2012). Exponential dichotomies for linear discrete-time systems in Banach spaces. *Appl. Anal. Discrete Math.* **6**, 140–155.

- Przyluski, K. M. and S. Rolewicz (1984). On stability of linear time-varying infinite-dimensional discrete-time systems. *Systems & Control Letters* **4**(5), 307–315.
- Sasu, B. (2009). On exponential dichotomy of variational difference equations. *Discrete Dyn. Nat. Soc.* **2009**(Article ID 324273), 18 pages.
- Sasu, B. and A. L. Sasu (2013). On the dichotomic behavior of discrete dynamical systems on the half-line. *Discrete Contin. Dyn. Syst.* **33**(7), 3057–3084.
- Stoica, C. (2016). Approaching the discrete dynamical systems by means of skew-evolution semiflows. *Discrete Dyn. Nat. Soc.* **2016**(Article ID 4375069), 10 pages.