
Scientific and Technical Bulletin Series: Electrote

Control and Computer Science, Vol. 4, No. 1,

chnics, Electronics, Automatic

 2007, ISSN 1584-9198

Eugene ROVEN A
Computer Science and Engineering

Department

York University, Toronto, ON

Office: CSEB 3026

Voice: 416-736-2100 ext. 33928

E-mail: roventa@yorku.ca

George RO U
„Aurel Vlaicu” University of Arad,

Engineering Faculty

Bd. Revolu iei nr. 77, 310130, Arad,

Romania,

E-mail: george_rosu_s@yahoo.com

PROLOG EXPERT SYSTEM: THE

DIAGNOSIS OF KIDNEY DISEASES

NOTE: This paper was presented at the International

Symposium “Research and Education in an Innovation Era”,

Section III, November 16-18, 2006, "Aurel Vlaicu" University of

Arad, Romania.

 63

Scientif

Contr

ic and Technical Bulletin Series: Electrotechnics, Electronics, Automatic

ol and Computer Science, Vol. 4, No. 1, 2007, ISSN 1584-9198

ABSTRACT

A Medical Expert System made in Visual Prolog is proposed.

This Expert System makes a differential diagnosis among the

main kidney diseases. The diagnosis is made taking into account

the clinical exam (the symptoms that can be seen and felt) and

the paraclinical exam (the results of laboratory tests). This

system is designed to give help to a medical expert in making the

appropriate diagnosis of a patient. Why would it be needed in

helping a physician? Because the kidney diseases have a lot of

common symptoms and many of them are very much alike, fact

that makes it very difficult even for a kidney specialist to put a

right diagnosis. The proposed Expert System can address that. It

contains in its knowledge base twenty-seven kidney diseases

from nine different categories.

KEYWORDS:

Expert System, Differential diagnosis, Clinical and paraclinical

exam,

 64

Scientific and Technical Bulletin Series: Electrotechnics, Electronics, Automatic

Control and Computer Science, Vol. 4, No. 1, 2007, ISSN 1584-9198

 65

INTRODUCTION

1. MEDICAL EXPERT SYSTEMS

Artificial Intelligence is defined as intelligence exhibited

by an artificial entity. AI programs that achieve expert-level

competence in solving problems in task areas by bringing to bear

a body of knowledge about specific tasks are called knowledge-

based or expert systems. A lot of Expert Systems are build in

medical domain. Their purpose is the diagnosis and treatment of

certain diseases. A Medical Expert System is made out of a

group of programs and a medical knowledge base with which

one can have a dialogue with a computer. The information

obtained from the computer is similar to the information given

by an expert doctor in that certain area.

1.1. The Proposed Medical Expert System

The proposed system has in its knowledge base twenty

seven kidney diseases from nine different categories. The user is

asked to answer with Yes or No if a certain symptom appears or

not. In the end, based on the user’s answers, the name of the

disease is posted up on the screen. A “minus” of this system (and

usually of any other Expert System) is that only the symptoms

put in the knowledge base by the programmer are available. It

doesn’t think and doesn’t learn by itself; but the knowledge base

can be updated anytime with new symptoms and new diseases.

Scientific and Technical Bulletin Series: Electrotechnics, Electronics, Automatic

Control and Computer Science, Vol. 4, No. 1, 2007, ISSN 1584-9198

 66

1.2 The Sections of the Program

The „facts” section

 In this section we have declared two facts:

xpositive(symbol,symbol) – for a positive answer and

xnegative(symbol,symbol) – for a negative answer

which will be used in defining the rules for the predicates

„positive” and „negative”, like this:

positive(X,Y):-

 xpositive(X,Y),!.

 positive(X,Y):-

 not(xnegative(X,Y)),

 question(X,Y,yes).

- if the answer to the question is affirmative;

 negative(X,Y):-

 xnegative(X,Y),!.

 negative(X,Y):-

 not(xpositive(X,Y)),

 question(X,Y,no).

- if the answer to the question is negative.

Of course that the negation of a negation is an affirmation and

the negation of an affirmation is a negation.

The „predicates” section

 In this section we have declared the following predicates:

 disease(symbol) - nondeterm (o)

 is_disease(symbol) - nondeterm (i)

 question(symbol,symbol,symbol)- determ (i,i,i)

 remember(symbol,symbol,symbol)- determ (i,i,i)

 positive(symbol,symbol) - determ (i,i)

 negative(symbol,symbol) - determ (i,i)

Scientific and Technical Bulletin Series: Electrotechnics, Electronics, Automatic

Control and Computer Science, Vol. 4, No. 1, 2007, ISSN 1584-9198

 67

 clear_facts - determ ()

 run - determ ()

 The predicate „disease” will have as a parameter the

name of the disease in the clauses section. The predicate

„is_disease” will have as a parameter the category of diseases

which the certain disease takes part of. This category is defined

and recursively appealed each time it is met in the program.

 The predicate „question” is the predicate of a „no” or

“yes” answer. The clauses (the rules) for this predicate will be

shown in the section „clauses”.

 The predicate „remember” is used by the program for

remembering the answer given to a fact, before adding more

facts while running the program, through the pre-defined

predicate „assertz”, like this:

 remember(X,Y,yes):-

 assertz(xpositive(X,Y)).

 remember(X,Y,no):-

 assertz(xnegative(X,Y)).

 Through the predicates „positive” and „negative” we

introduce the symptoms of the disease: the symptom is put as an

argument at „positive” if it is available for that certain disease,

respectively as an argument at “negative” if it is not available.

 The predicate „clear_facts” is used for stopping the

compiling of the program, and the predicate „run” is used for

running the program.

The „clauses” (rules) section

 In this section we introduced all the rules that define the

diseases, using the predicates „disease”, „is_disease”, „positive”

and „negative”, defined in the predicates section.

 For a better understanding we illustrate here the rules for

one disease:

Scientific and Technical Bulletin Series: Electrotechnics, Electronics, Automatic

Control and Computer Science, Vol. 4, No. 1, 2007, ISSN 1584-9198

 68

disease(sindromul_Goodpasture):-

 positive(se_semnaleaza,hemoragii_pulmonare),

 is_disease(glomerulonefrita_rapid_progresiva),

 positive(apare_o_infectie_a,cailor_respiratorii_superioare),

 positive(simptome_respiratorii,tuse_dispnee),

positive(anemia_este,variabila),

 positive(hematuria_este,microscopica_si_moderata),

positive(proteinuria_este,moderata),

 positive(hipertensiunea_arteriala,este_usoara),

 positive(apar_fenomene_articulare,artralgii_variabile),

 negative(complexele_imune_circulante,sunt_crescute),

positive(fractia_C3,este_normala),

 positive(ureea_sanguina_si_acidul_uric,inregistreaza_valori_crescute),

 positive(se_evidentiaza_prezenta,unor_infiltrate_pulmonare_bazale),

 positive(imunofluorescenta_evidentiaza,depozite_liniare_de_imunoglobuline_IgG).

 In the following we present the common clause for the

category “Glomerulonefrite rapid progresive” (in this case),

which is called in the rules from all the diseases in this category.

is_disease(glomerulonefrita_rapid_progresiva):-

 positive(se_semnaleaza_inflamatie_glomerulara,si_oligoanurie),

positive(debutul_e_lent_progresiv,rar_acut),

 positive(evolutie_spre_insuficienta_renala,in_perioada_de_cateva_zile_la_cateva_luni),

 positive(leziunea_predominenta_o_reprezinta,glomerulita_extracapilara).

 We also have the clause for „question”, using the

predicate „remember”:

question(X,Y,yes):-!,

 write(X," ",Y,'\n'),

 readln(Reply),nl,

 frontchar(Reply,'y',_),

 remember(X,Y,yes).

 question(X,Y,no):-!,

 write(X," ",Y,'\n'),

 readln(Reply),nl,

 frontchar(Reply,'n',_),

 remember(X,Y,no).

Scientific and Technical Bulletin Series: Electrotechnics, Electronics, Automatic

Control and Computer Science, Vol. 4, No. 1, 2007, ISSN 1584-9198

 69

 Here is the clause for the predicate „clear_facts”:

clear_facts:-

 write("\n\nPress <<space>> to exit. \n"),

 retractall(_,dbasedom),

 readchar(_).

„Jumps” out of the program when pressing „space”: „retractall”

(deletes facts while running) and „readchar”(reads a “char”

variable) – these are pre-defined predicates in Prolog.

 The clause for the predicate „run”:

 run:-

 disease(X),!,

 write("\nThe disease having all these symptoms is: ",X),

 nl,

 clear_facts.

 run:-

 write("\nThis disease cannot be determined. \n\n"),

 clear_facts.

 The program calls the predicate „disease” and posts up

on the screen the name of the disease (read from the argument),

and in case it cannot find all the symptoms or the disease cannot

be identified it gives a certain message.

The „goal” section

 Here the “run” predicate is called and also the program

posts up on the screen information which the user will be able to

read when running the program (the name of the system, who

made it, how to use it etc.).

Scientific and Technical Bulletin Series: Electrotechnics, Electronics, Automatic

Control and Computer Science, Vol. 4, No. 1, 2007, ISSN 1584-9198

 70

2. HOW THE PROGRAM WORKS

We consider for example a certain disease from a certain

category. The program “thinks” like this: if it has a positive

answer to a symptom, it goes on with the symptoms from that

disease. If only one symptom from the disease is negative it

“jumps” to the first symptom from the next disease. Of course

that in takes into accounts the category symptoms also. If at least

one symptom from the category is negative, the program goes to

the next disease. If all the category symptoms are affirmative, it

goes on to the symptoms which make the difference between this

disease and the other diseases from this category.

3. FUTURE IMPROVEMENTS

The knowledge base can be improved with new diseases

and even new symptoms.

An important way of improving this Expert System is

using fuzzy techniques. In this case the system would establish

the degree that the diagnosis is close to the reality.

Here we present some ideas for fuzzifying the Prolog

rules:

p(X,a) :- q(X,u), r(X,Y,v). where:

a = degree to which „X” satisfies „p”;

u = degree to which „X” satisfies „q”;

v = degree to which„(X,Y)” satisfies „r”.

The degree is a number between 1 and 0.

 a = sup(u v)

Scientific and Technical Bulletin Series: Electrotechnics, Electronics, Automatic

Control and Computer Science, Vol. 4, No. 1, 2007, ISSN 1584-9198

 71

Example:

 big(X,a) :- tall(X,u), heavy(X,v). which means:

X is big (with a degree a) if X is tall (with a degree u) and X is

heavy (with a degree v).

 In this way we could fuzzify all the rules in this program

to obtain the degrees in diagnosis of the kidney diseases.

CONCLUSIONS

 Taking into account the fact that we are dealing with a

person’s health and we have to put an approximate diagnosis on

a certain disease, this system used in practice implies a great

risk. In reality there are more kidney diseases than we have in

this system’s knowledge base. Therefore, our knowledge base is

not complete, but we can update and improve it anytime with

new symptoms and new diseases.

 On the other hand, it is possible that the symptoms

already present are not 100% right, because different experts

have different opinions and there are a lot of anomalies in

Medicine.

REFERENCES

[1] Bostaca, I. (1999) Cheile diagnosticului în clinica medical , Editura

Polirom.

[2] Gluhovschi, G. (2004) Curs de Nefrologie, Lito U.M.F.T.

[3] Romo an, I. (1999) Rinichiul. Ghid diagnostic i terapeutic, Editura

Medical .

[4] Luger, G.L. (2002) Artificial Intelligence. Structures and Strategies for

Complex Problem Solving, 4ed., Addison-Wesley.

[5] Negnevitski, M. (2002) Artificial Intelligence Guide to Intelligent Systems,

Addison-Wesley.

Scientific and Technical Bulletin Series: Electrotechnics, Electronics, Automatic

Control and Computer Science, Vol. 4, No. 1, 2007, ISSN 1584-9198

 72

[6] Roven a, E. (2000) Elements de logique pour l’Informatique, GREF

Toronto

[7] Roven a, E., Spircu, T. (in publication) Management of Knowledge

Imperfection in Developing Intelligent Systems, Springer-Verlag

[8] Russell, S., Norvig P. (1995) Artificial Intelligence. A Modern Approach,

Prentice Hall.

[9] Rowe, N.C. (1988) Artificial Intelligence through Prolog, Prentice Hall.

[10] Bratko, I. (2000) Prolog Programming for Artificial Intelligence,

Addison - Wesley.

[11] Nilsson, U., Maluszynski, J. (2000) Logic Programming and

Prolog(2ed), John Wiley & Sons Ltd.

[12] Reghi , M., Roven a, E. (1998) Classical and Fuzzy Concepts in

Mathematical Logic and Applications, CRC Press New York

