Emission of volatile organic compounds as a signal of plant stress

  • Kaia Kask Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences
  • Astrid Kännaste Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences
  • Ülo Niinemets Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences




Adler, L. S., Wink, M., Distl, M., Lentz, A. J. 2006. Leaf herbivory and nutrients increase nectar alkaloids. Ecology Letters 9(8), 960-967. doi:10.1111/j.1461-0248.2006.00944.x

Arimura, G., Kost, C., Boland, W. 2005. Herbivore-induced, indirect plant defences. Biochimica et Biophysica Acta 1734(2), 91-111.

Arimura, G., Ozawa, R., Horiuchi, J., Nishioka, T., Takabayashi, J. 2001. Plant–plant interactions mediated by volatiles emitted from plants infested by spider mites. Biochemical Systematics and Ecology 29(10), 1049-1061.

Baldwin, I. T., Halitschke, R., Paschold, A., von Dahl, C. C., Preston, C. A. 2006. Volatile signaling in plant-plant interactions: “talking trees” in the genomics era. Science, 311(5762), 812-815.

Baldwin, I., Kessler, A., Halitschke, R. 2002. Volatile signaling in plant–plant–herbivore interactions: what is real? Current Opinion in Plant Biology 5(4), 351-354.

Bate, N. J., Rothstein, S. J. 1998. C6-volatiles derived from the lipoxygenase pathway induce a subset of defense-related genes. Plant Journal, 16(5), 561-569.

Beauchamp, J., Wisthaler, A. 2005. Ozone induced emissions of biogenic VOC from tobacco: relationships between ozone uptake and emission of LOX products. Plant, Cell and Environment 28(10), 1334-1343.

Bertin, N., Staudt, M., Hansen, U., Seufert, G., Ciccioli, P., Foster, P., Fugit, J. L., Torres, L. 1997. Diurnal and seasonal course of monoterpene emissions from Quercus ilex (L.) under natural conditions - applications of light and temperature algorithms. Atmospheric Environment 31, 135-144.

Calfapietra, C., Pallozzi, E., Lusini, I., Velikova, V. 2013. “Modification of BVOC emissions by changes in atmospheric [CO2] and air pollution,” in “Biology, Controls and Models of Tree Volatile Organic Compound Emissions”, eds Ü. Niinemets and R. K. Monson. Springer, Berlin, pp 253-284

Cardoza, Y. J., Alborn, H. T., Tumlinson, J. H. 2002. In vivo volatile emissions from peanut plants induced by simultaneous fungal infection and insect damage. Journal of Chemical Ecology 28(1), 161-174.

Chen, Y., Pawliszyn, J. 2003. Time-weighted average passive sampling with a solid-phase microextraction device. Analytical Chemistry 75(9), 2004-2010.

Chen, F., Tholl, D., Bohlmann, J., Pichersky, E. 2011. The family of terpene synthases in plants: a mid-size family of genes for specialized metabolism that is highly diversified throughout the kingdom. Plant Journal: for Cell and Molecular Biology 66(1), 212-229.

Colquhoun, T. A., Schwieterman, M. L., Gilbert, J. L., Jaworski, E. A., Langer, K. M., Jones, C. R., Rushing, G.V. Hunter, T. M., Olmstead, J. C., David G. D., Folta, K. M. 2013. Light modulation of volatile organic compounds from petunia flowers and select fruits. Postharvest Biology and Technology 86, 37-44.

Cooper, S. M., Ginnet, T. F. 1998. Spines protect plants against browsing by small climbing mammals. Oecologia 113(2), 219-221.

Copolovici, L., Filella, I., Llusià, J., Niinemets, Ü., Peñuelas, J. 2005. The capacity for thermal protection of photosynthetic electron transport varies for different monoterpenes in Quercus ilex. Plant Physiology 139(1), 485-496.

Copolovici, L., Kännaste, A., Pazouki, L., Niinemets, Ü. 2012. Emissions of green leaf volatiles and terpenoids from Solanum lycopersicum are quantitatively related to the severity of cold and heat shock treatments. Journal of Plant Physiology 169(7), 664-672.

Copolovici, L., Kännaste, A., Remmel, T., Vislap, V., Niinemets, Ü. 2011. Volatile emissions from Alnus glutinosa induced by herbivory are quantitatively related to the extent of damage. Journal of Chemical Ecology 37(1), 18-28.

Crespo, E., Hordijk, C. A, de Graaf, R. M., Samudrala, D., Cristescu, S. M., Harren, F. J. M., van Dam, N. M. 2012. On-line detection of root-induced volatiles in Brassica nigra plants infested with Delia radicum L. root fly larvae. Phytochemistry 84, 68-77.

Darbah, J. N. T., Sharkey, T. D., Calfapietra, C., Karnosky, D. F. 2010. Differential response of aspen and birch trees to heat stress under elevated carbon dioxide. Environmental Pollution 158(4), 1008-1014.

Dicke, M. 1994. Why do plants “talk”? Chemoecology 165, 159-165.

Dicke, M., Baldwin, I. T. 2010. The evolutionary context for herbivore-induced plant volatiles: beyond the ‘cry for help’. Trends in Plant Science 15(3), 167-175.

Dicke, M., van Loon, J. J. A., Soler, R. 2009. Chemical complexity of volatiles from plants induced by multiple attack. Nature Chemical Biology 5, 317-324.

Dicke, M., Loreto, F. 2010. Induced plant volatiles: from genes to climate change. Trends in Plant Science 15(3), 115-117.

Dudareva, N., Murfitt, L. M., Mann, C. J., Gorenstein, N., Kolosova, N., Kish, C. M., Bonham, C., Wood, K. 2000. Developmental regulation of methyl benzoate biosynthesis and emission in snapdragon flowers. The Plant Cell 12(6), 949-961.

Dudareva, N., Pichersky, E., Gershenzon, J. 2004. Biochemistry of plant volatiles. Plant Physiology 135, 1893-1902.

Duhl, T. R., Helmig, D., Guenther, A. 2008. Sesquiterpene emissions from vegetation: a review. Biogeosciences 5(3), 761-777.

Eigenbrode, S. D., Ding, H., Shiel, P., Berger, P. H. 2002. Volatiles from potato plants infected with potato leafroll virus attract and arrest the virus vector, Myzus persicae (Homoptera: Aphididae). Proceedings. Biological sciences / The Royal Society 269(1490), 455-460.

Fatouros, N. E., Lucas-Barbosa, D., Weldegergis, B. T., Pashalidou, F. G., van Loon, J. J. A., Dicke, M., Harvey, J. A., Gols, R., Huigens, M. E. 2012. Plant volatiles induced by herbivore egg deposition affect insects of different trophic levels. Plos one 7(8), e43607.

Geervliet, J. B. F., Posthumus, M. A., Vet, L. E. M., Dicke, M. 1997. Comparative analysis of headspace volatiles from different caterpillar-infested or uninfested food plants of Pieris species. Journal of Chemical Ecology 23(12), 2935-2954.

Guenther, A., Karl, T., Harley, P., Wiedinmyer, C., Palmer, P. I., Geron, C. 2006. Estimates of global terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases and Aerosols from Nature). Atmospheric Chemistry and Physics 6, 3181-3210.

Guenther, A. B., Zimmerman, P.R., Harley, P. C., Monson, R.K., Fall, R. 1993. Isoprene and monoterpene emission rate variability: model evaluations and sensitivity analyses. Journal of Geophysical Research: Atmospheres 98 (1984–2012), D7, 12609-12617.

Halitschke, R., Kessler, A., Kahl, J., Lorenz, A., Baldwin, I. T. 2000. Ecophysiological comparison of direct and indirect defenses in Nicotiana attenuata. Oecologia 124(3), 408-417.

Hanley, M. E., Lamont, B. B., Fairbanks, M. M., Rafferty, C. M. 2007. Plant structural traits and their role in anti-herbivore defence. Perspectives in Plant Ecology, Evolution and Systematics 8(4), 157-178.

Hatanaka, A. 1993. The biogeneration of green odour by green leaves. Phytochemistry 34(5), 1201-1218.

Holopainen, J. K. 2004. Multiple functions of inducible plant volatiles. Trends in Plant Science 9(11), 529-533.

Holopainen, J. K., Gershenzon, J. 2010. Multiple stress factors and the emission of plant VOCs. Trends in Plant Science 15, 176-184.

Holopainen, J. K., Nerg, A.-M., Blande, J. D. 2013. “Multitrophic signalling in polluted atmospheres,” in “Biology, Controls and Models of Tree Volatile Organic Compound Emissions”, eds Ü. Niinemets and R. K. Monson. Springer, Berlin, pp 285-314

Howe, G. A., Schaller, A. 2008. “Direct defenses in plants and their induction by wounding and insect herbivores,” in “Induced plant resistance to herbivory”, ed Schaller A. Springer, Berlin, pp 7-29

Hu, Z., Zhang, H., Leng, P., Zhao, J., Wang, W., Wang, S. 2013. The emission of floral scent from Lilium “siberia” in response to light intensity and temperature. Acta Physiologiae Plantarum 35(5), 1691-1700.

Huang, M., Sanchez-Moreiras, A. M., Abel, C., Sohrabi, R., Lee, S., Gershenzon, J., Tholl, D. 2012. The major volatile organic compound emitted from Arabidopsis thaliana flowers, the sesquiterpene (E)-β-caryophyllene, is a defense against a bacterial pathogen. New Phytologist 193(4), 997-1008.

IPCC (Intergovernmental Panel on Climate Change) 2007. Climate Change 2007: Synthesis Report. Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovern- mental Panel on Climate Change. Cambridge University Press, U.K., p. 996

Kainulainen, P., Oksanen, J., Palomäki, V., Holopainen, J. K., Holopainen, T. 1992. Effect of drought and waterlogging stress on needle monoterpenes of Picea abies. Canadian Journal of Botany, 70(8), 1613–1616.

Kellomäki, S., Wang, K., Lemettinen, M. 2000. Controlled environment chambers for investigating tree response to elevated CO2 and temperature under boreal conditions. Photosynthetica 38(1), 69-81.

Kesselmeier, J., Staudt, M. 1999. Biogenic volatile organic compounds (VOC): an overview on emission, physiology and ecology. Journal of Atmospheric Chemistry 33(1), 23-88.

Kessler, A., Heil, M. 2011. The multiple faces of indirect defences and their agents of natural selection. Functional Ecology 25(2), 348-357.

Kreuzwieser, J., Rennenberg, H. 2013. “Flooding-driven emissions from trees,” in “Biology, Controls and Models of Tree Volatile Organic Compound Emissions”, eds Ü. Niinemets and R. K. Monson. Springer, Berlin, pp 237-252

Köllner, T. G., Schnee, C., Gershenzon, J., Degenhardt, J. 2004. The sesquiterpene hydrocarbons of maize (Zea mays) form five groups with distinct developmental and organ-specific distributions. Phytochemistry 65(13), 1895-1902.

Kännaste, A., Copolovici, L., Pazouki, L., Suhhorutšenko, M., Niinemets, Ü. 2013. Highly variable chemical signatures over short spatial distances among Scots pine (Pinus sylvestris) populations. Tree Physiology, 33(4), 374–87.

Kännaste, A., Nordenhem, H., Nordlander, G., & Borg-Karlson, A.-K. 2009. Volatiles from a mite-infested spruce clone and their effects on pine weevil behavior. Journal of Chemical Ecology, 35(10), 1262–1271.

Lambers, H., Chapin, F.S., Pons, T.L. 2008 “Plant physiological ecology”, 2nd edn. Springer, New York. Pp. 4.

Laothawornkitkul, J., Paul, N. D., Vickers, C. E., Possell, M., Taylor, J. E., Mullineaux, P. M., Hewitt, C. N. 2008. Isoprene emissions influence herbivore feeding decisions. Plant, Cell and Environment 31(10), 1410-1415.

Laothawornkitkul, J., Taylor, J. E., Paul, N. D., Hewitt, C. N. 2009. Biogenic volatile organic compounds in the Earth system. New Phytologist 183(1), 27-51.

Leitner, M., Boland, W., Mithöfer, A. 2005. Direct and indirect defences induced by piercing-sucking and chewing herbivores in Medicago truncatula. New Phytologist 167(2), 597-606.

Lerdau, M., Gray, D. 2003. Ecology and evolution of light-dependent and light-independent phytogenic volatile organic carbon. New Phytologist 157(2), 199-211.

Li, Z., Sharkey, T. D. (2013). “Molecular and pathway controls on biogenic volatile organic compound emission,” in “Biology, Controls and Models of Tree Volatile Organic Compound Emissions”, eds Ü. Niinemets and R. K. Monson. Springer, Berlin, pp 119-151.

Llusià, J., Peñuelas, J., Alessio, G. A., Ogaya, R. 2010a. Species-specific, seasonal and inter-annual changes in foliar terpene emission rates in Phillyrea latifolia L. and Quercus ilex L. submitted to rain exclusion in the Prades mountains (Catalonia). Russian Journal of Plant Physiology 58(1), 126-132.

Llusià, J., Peñuelas, J., Asensio, D., Munné-Bosch, S. 2005. Airborne limonene confers limited thermotolerance to Quercus ilex. Physiologia Plantarium 123(1), 40-48.

Llusià, J., Peñuelas, J., Guenther, A., Rapparini, F. 2013. Seasonal variations in terpene emission factors of dominant species in four ecosystems in NE Spain. Atmospheric Environment 70, 149-158.

Llusià, J., Peñuelas, J., Sardans, J., Owen, S. M., Niinemets, Ü. 2010b. Measurement of volatile terpene emissions in 70 dominant vascular plant species in Hawaii: aliens emit more than natives. Global Ecology & Biogeography 19(6), 863-874.

Loivamäki, M., Louis, S., Cinege, G., Zimmer, I., Fischbach, R. J., Schnitzler, J.-P. 2007. Circadian rhythms of isoprene biosynthesis in grey poplar leaves. Plant Physiology 143(1), 540-551.

Loivamäki, M., Mumm, R., Dicke, M., Schnitzler, J.-P. 2008. Isoprene interferes with the attraction of bodyguards by herbaceous plants. Proceedings of the National Academy of Sciences of the United States of America 105(45), 17430-17435.

Loreto, F., Barta, C., Brilli, F., Nogues, I. 2006. On the induction of volatile organic compound emissions by plants as consequence of wounding or fluctuations of light and temperature. Plant, Cell and Environment 29(9), 1820-1828.

Loreto, F., Förster, A., Dürr, M., Csiky, O., Seufert, G. 1998. On the monoterpene emission under heat stress and on the increased thermotolerance of leaves of Quercus ilex L. fumigated with selected monoterpenes. Plant Cell and Environment 21(1), 101-107.

Loreto, F., Schnitzler, J.-P. 2010. Abiotic stresses and induced BVOCs. Trends in Plant Science 15(3), 154-166.

Loreto, F., Velikova, V. 2001. Isoprene produced by leaves protects the photosynthetic apparatus against ozone damage, quenches ozone products, and reduces lipid peroxidation of cellular membranes. Plant Physiology 127, 1781-1787.

Lusebrink, I., Evenden, M. L., Blanchet, F. G., Cooke, J. E. K., Erbilgin, N. 2011. Effect of water stress and fungal inoculation on monoterpene emission from an historical and a new pine host of the mountain pine beetle. Journal of Chemical Ecology, 37(9), 1013–26.

Maffei, M. E. 2010. Sites of synthesis, biochemistry and functional role of plant volatiles. South African Journal of Botany 76(4), 612-631.

Martin, D., Gershenzon, J., Bohlmann, J. 2003. Induction of volatile terpene biosynthesis and diurnal emission by methyl jasmonate in foliage of Norway spruce. Plant Physiolgy 132(3), 1586-1599.

Mayrhofer, S., Teuber, M., Zimmer, I., Louis, S., Fischbach, R. J., Schnitzler, J.-P. 2005. Diurnal and seasonal variation of isoprene biosynthesis-related genes in grey poplar leaves. Plant Physiology 139(1), 474-484.

Milewski, A.V., Young, T. P., Madden, D. 1991. Thorns as induced defenses: experimental evidence. Oecologia 86(1), 70-75.

Mithen, R.F. 2001. Glucosinolates and their degradation products. Advances in Botanical Research 35, 213-232.

Mittler, R. 2006. Abiotic stress, the field environment and stress combination. Trends in Plant Science 11(1), 15-19.

Monson, R. K. 2013. “Metabolic and gene expression controls on the production of biogenic volatile organic compounds,” in “Biology, Controls and Models of Tree Volatile Organic Compound Emissions”, eds Ü. Niinemets and R. K. Monson. Springer, Berlin, pp 153-179

Niinemets, Ü. 2010a. Mild versus severe stress and BVOCs: thresholds, priming and consequences. Trends in Plant Science 15(3), 145-153.

Niinemets, Ü. 2010b. Responses of forest trees to single and multiple environmental stresses from seedlings to mature plants: past stress history, stress interactions, tolerance and acclimation. Forest Ecology and Management 260(10), 1623-1639.

Niinemets, Ü., Arneth, A., Kuhn, U., Monson, R. K., Peñuelas, J., Staudt, M. 2010a. The emission factor of volatile isoprenoids: stress, acclimation, and developmental responses. Biogeosciences 7, 2203-2223.

Niinemets, Ü., Kännaste, A., Copolovici, L. 2013. Quantitative patterns between plant volatile emissions induced by biotic stresses and the degree of damage. Frontiers in Plant Science 4, 262.

Nordlander, G.. 1991. Host finding in the pine weevil Hylobius abietis: effects of conifer volatiles and added limonene. Entomologia Experimentalis et Applicata 59(3), 229-237.

Oliet, J. A., Puértolas, J., Planelles, R., Jacobs, D. F. 2013. Nutrient loading of forest tree seedlings to promote stress resistance and field performance: a Mediterranean perspective. New Forests, 44(5), 649–669.

Owen, S., Boissard, C., Hewitt, C. 2001. Volatile organic compounds (VOCs) emitted from 40 mediterranean plant species: VOC speciation and extrapolation to habitat scale. Atmospheric Environment 35(32), 5393–5409.

Paré, P., Tumlinson, J. 1996. Plant volatile signals in response to herbivore feeding. Florida Entomologist 79, 93-103.

Peñuelas, J., Filella, I., Seco, R., Llusià, J. 2009. Increase in isoprene and monoterpene emissions after re-watering of droughted Quercus ilex seedlings, Biologia Plantarum, 53(2), 351–354.

Pinto, D. M., Blande, J. D., Souza, S. R., Nerg, A.-M., Holopainen, J. K. 2010. Plant volatile organic compounds (VOCs) in ozone (O3) polluted atmospheres: The ecological effects. Journal of Chemical Ecology 36(1), 22-34.

Pinto-Zevallos, D. M., Hellén, H., Hakola, H., van Nouhuys, S., Holopainen, J. K. 2013. Induced defenses of Veronica spicata: Variability in herbivore-induced volatile organic compounds. Phytochemistry Letters 6(4), 653-656.

Pichersky, E., Noel, J., Dudareva, N. 2006. Biosynthesis of plant volatiles: nature’s diversity and ingenuity. Science 311(5762), 808-811.

Possell, M., Loreto, F. 2013. “The role of volatile organic compounds in plant resistance to abiotic stresses: responses and mechanisms,” in: “Biology, Controls and Models of Tree Volatile Organic Compound Emissions”, eds Ü. Niinemets and R. K. Monson. Springer, Berlin, pp 209-235

Raghava, T., Ravikumar, P., Hegde, R., Kush, A. 2010. Spatial and temporal volatile organic compound response of select tomato cultivars to herbivory and mechanical injury. Plant Science 179(5), 520-526.

Rajabi Memari, H., Pazouki, L., Niinemets, Ü. 2013. “The biochemistry and molecular biology of volatile messengers in trees,” in “Biology, Controls and Models of Tree Volatile Organic Compound Emissions”, eds Ü. Niinemets and R. K. Monson. Springer, Berlin, pp 47-93

Rasulov, B., Hüve, K., Välbe, M., Laisk, A., Niinemets, Ü. 2009. Evidence that light, carbon dioxide and oxygen dependencies of leaf isoprene emission are driven by energy status in hybrid aspen. Plant Physiology 151(1), 448-460.

Rennenberg, H., Loreto, F., Polle, A, Brilli, F., Fares, S., Beniwal, R. S., Gessler, A. 2006. Physiological responses of forest trees to heat and drought. Plant Biology 8(5), 556-571.

Rosenkranz, M., Schnitzler, J.-P. (2013). “Genetic engineering of BVOC emissions from trees,” in “Biology, Controls and Models of Tree Volatile Organic Compound Emissions”, eds Ü. Niinemets and R. K. Monson. Springer, Berlin, pp 95-118

Räisänen, T., Ryyppö, A., Kellomäki, S. 2008. Effects of elevated CO2 and temperature on monoterpene emission of Scots pine (Pinus sylvestris L.). Atmospheric Environment 42(18), 4160-4171.

Sharkey, T. D., Singsaas, E. 1995. Why plants emit isoprene? Nature 374, 769.

Sharkey, T. D., Wiberley, A. E., Donohue, A. R. 2008. Isoprene emission from plants: why and how. Annals of Botany 101(1), 5-18.

Shiojiri, K., Karban, R. 2006. Plant age, communication, and resistance to herbivores: young sagebrush plants are better emitters and receivers. Oecologia 149(2), 214-220.

Singsaas, E. L., Lerdau, M., Winter, K., Sharkey, T. D. 1997. Isoprene increases thermotolerance of isoprene-emitting species. Plant Physiology 115(4), 1413-1420.

Spinelli, F., Cellini, A., Marchetti, L. 2011. “Emission and function of volatile organic compounds in response to abiotic stress”, in Agricultural and Biological Sciences “Abiotic Stress in Plants - Mechanisms and Adaptations”, eds A. Shanker and B. Venkateswarlu.

Staudt, M., Bertin, N. 1998. Light and temperature dependence of the emission of cyclic and acyclic monoterpenes from holm oak (Quercus ilex L.) leaves. Plant, Cell and Environment 21(4), 385-395.

Staudt, M., Bertin, N., Hansen, U. 1997. Seasonal and diurnal patterns of monoterpene emissions from Pinus pinea (L.) under field conditions. Atmospheric Environment 31(97), 145-156.

Sun, Z., Copolovici, L., Niinemets, Ü. 2012. Can the capacity for isoprene emissions acclimate to environmental modifications during autumn senescence in temperate deciduous tree species Populus tremula? Journal of Plant Research 125, 263-274.

Sun, Z., Hüve, K., Vislap, V., Niinemets, Ü. 2013. Elevated growth [CO2] magnifies isoprene emissions under heat, alters environmental responses and improves thermal resistance in hybrid aspen. Journal of Experimental Botany, in Press.

Sun, Z., Niinemets, Ü., Copolovici, L. 2009. Foliar isoprene emission during autumn senescence in aspen (Populus tremula). Geochimica et Cosmochimica Acta 73:A1295

Takabayashi, J., Dicke, M., Posthumus, M. 1991. Variation in composition of predator-attracting allelochemicals emitted by herbivore-infested plants: Relative influence of plant and herbivore. Chemoecology, 2(1), 1–6.

Taveira, M., Fernandes, F., Guedes de Pinho, P., Andrade, P. B., Pereira, J. A., Valentão, P. 2009. Evolution of Brassica rapa var. rapa L. volatile composition by HS-SPME and GC/IT-MS. Microchemical Journal 93(2), 140-146.

Theis, N., Kesler, K., Adler, L. S. 2009. Leaf herbivory increases floral fragrance in male but not female Cucurbita pepo subsp. texana (Cucurbitaceae) flowers. American Journal of Botany 96(5), 897-903.

Tholl, D. 2006. Terpene synthases and the regulation, diversity and biological roles of terpene metabolism. Current Opinion in Plant Biology 9(3), 297-304.

Trowbridge, A. M., Stoy, P. C. 2013. “BVOC mediated plant-herbivore interactions,” in “Biology, Controls and Models of Tree Volatile Organic Compound Emissions”, eds Ü. Niinemets and R. K. Monson. Springer, Berlin, pp 21-46.

Turtola, S., Manninen, A. M., Rikala, R., Kainulainen, P. 2003. Drought stress alters the concentration of wood terpenoids in Scots pine and Norway spruce seedlings. Journal of Chemical Ecology, 29(9), 1981–1995.

Valladares, F.,Pearcy, R. W. 1997. Interactions between water stress, sun-shade acclimation, heat tolerance and photoinhibition in the sclerophyll Heteromeles arbutifolia. Plant, Cell and Environment, 20(1), 25–36.

Velikova, V., Edreva, A., Loreto, F. 2004. Endogenous isoprene protects Phragmites australis leaves against singlet oxygen. Physiolgia Plantarium 122(2), 219-225.

Velikova, V., Loreto, F. 2005. On the relationship between isoprene emission and thermotolerance in Phragmites australis leaves exposed to high temperatures and during the recovery from a heat. Plant, Cell and Environment 28(3) 318-327.

Velikova, V., Pinelli, P., Pasqualini, S., Reale, L., Ferranti, F., Loreto, F. 2005. Isoprene decreases the concentration of nitric oxide in leaves exposed to elevated ozone. New Phytologist 166(2), 419-425.

Velikova, V., Tsonev, T., Barta, C., Centritto, M., Koleva, D., Stefanova, M., Busheva, M. Loreto, F. 2009. BVOC emissions, photosynthetic characteristics and changes in chloroplast ultrastructure of Platanus orientalis L. exposed to elevated CO2 and high temperature. Environmental Pollution 157(10), 2629-2637.

Vickers, C. E., Possell, M., Cojocariu, C. I., Velikova, V. B., Laothawornkitkul, J., Ryan, A., Mullineaux, P. M., Hewitt, C. N. 2009. Isoprene synthesis protects transgenic tobacco plants from oxidative stress. Plant, Cell and Environment 32, 520-53.

Wei, J., Kang, L. 2011. Roles of (Z)-3-hexenol in plant-insect interactions. Plant Signaling & Behavior 6(3), 369-371.

Wilkinson, M. J., Owen, S. M., Possell, M., Hartwell, J., Gould, P., Hall, A., Vickers, C., Hewitt, C. N. 2006. Circadian control of isoprene emissions from oil palm (Elaeis guineensis). Plant Journal 47(6), 960-968.

Zhao, N., Guan, J., Ferrer, J.-L., Engle, N., Chern, M., Ronald, P., Tschaplinski, T. J., Chen, F. 2010. Biosynthesis and emission of insect-induced methyl salicylate and methyl benzoate from rice. Plant Physiology and Biochemistry 48, 279-289.