Volatile Organic Compounds Emission from Betula verrucosa under Drought Stress

  • Andreea Pag Institute of Technical and Natural Sciences Research-Development of Aurel Vlaicu University
  • Adina Bodescu aInstitute of Technical and Natural Sciences Research-Development of Aurel Vlaicu University
  • Astrid Kännaste Estonian University of Life Sciences, Institute of Agricultural and Environmental Sciences
  • Daniel Tomescu Institute of Technical and Natural Sciences Research-Development of Aurel Vlaicu University
  • Ülo Niinemets bEstonian University of Life Sciences, Institute of Agricultural and Environmental Sciences
  • Lucian Copolovici Deputy Director of RDI Institute in Natural and Technical Sciences of “Aurel Vlaicu” University


In the nature, plants are under a multitude of different stress factors. In response to biotic or abiotic stresses plant elicited biogenic volatile organic compounds (BVOC). Plants emission patterns change both quantitatively and qualitatively as well in riposte to damage by biotic or abiotic stress. In the present work we focus our study to the emission of volatile organic compounds from Betula verrucosa under drought stress. Solid-phase micro extraction (SPME) technique have been used for trapping of the BVOC followed by GC-MS desorption. The results have been show that drought induced a high emission of lipoxygenase pathway products.


Chaves, M.M., Miguel Costa, J., Madeira Saibo, N.J., 2011. Recent Advances in Photosynthesis Under Drought and Salinity, Plant Responses to Drought and Salinity Stress: Developments in a Post-Genomic Era, pp. 49-104.

Copolovici, L., Kaennaste, A., Pazouki, L., Niinemets, U., 2012. Emissions of green leaf volatiles and terpenoids from Solarium lycopersicum are quantitatively related to the severity of cold and heat shock treatments. Journal of Plant Physiology 169, 664-672.

Copolovici, L., Kännaste, A., Niinemets, U., 2009. Gas chromatography-mass spectrometry method fordetermination of monoterpene and sesquiterpene emissions from stressed plants. Studia Universitatis Babes-Bolyai Chemia 54, 329-339.

Demarcke, M., Muller, J.F., Schoon, N., Van Langenhove, H., Dewulf, J., Joo, E., Steppe, K., Simpraga, M., Heinesch, B., Aubinet, M., Amelynck, C., 2010. History effect of light and temperature on monoterpenoid emissions from Fagus sylvatica L. Atmospheric Environment 44, 3261-3268.

Hakola, H., Rinne, J., Laurila, T., 1998. The hydrocarbon emission rates of tea-leafed willow (Salix phylicifolia), silver birch (Betula pendula) and European aspen (Populus tremula). Atmospheric Environment 32, 1825-1833.

Holopainen, J., Heijari, J., Oksanen, E., Alessio, G., 2010. Leaf Volatile Emissions of Betula pendula during Autumn Coloration and Leaf Fall. Journal of Chemical Ecology 36, 1068-1075.

Holopainen, J.K., Gershenzon, J., 2010. Multiple stress factors and the emission of plant VOCs. Trends in Plant Science 15, 176-184.

Ibrahim, M.A., Menp, M., Hassinen, V., Kontunen-Soppela, S., Malec, L., Rousi, M., Pietikinen, L., Tervahauta, A., Krenlampi, S., Holopainen, J.K., Oksanen, E.J., 2010. Elevation of night-time temperature increases terpenoid emissions from Betula pendula and Populus tremula. Journal of Experimental Botany 61, 1583-1595.

Laothawornkitkul, J., Taylor, J.E., Paul, N.D., Hewitt, C.N., 2009. Biogenic volatile organic compounds in the Earth system. New Phytologist 183, 27-51.

Liavonchanka, A., Feussner, I., 2006. Lipoxygenases: Occurrence, functions and catalysis. Journal of Plant Physiology 163, 348-357.

Niinemets, Ü., 2010. Mild versus severe stress and BVOCs: thresholds, priming and consequences. Trends in Plant Science 15, 145-153.

Pääkkönen, E., Günthardt-Goerg, M.S., Holopainen, T., 1998. Responses of leaf processes in a sensitive birch (Betula pendula Roth) clone to ozone combined with drought. Annals of Botany 82, 49-59.

Penuelas, J., Llusia, J., 2003. BVOCs: plant defense against climate warming? Trends in Plant Science 8, 105-109.

Porta, H., Rocha-Sosa, M., 2002. Plant lipoxygenases. Physiological and molecular features. Plant Physiology 130, 15-21.

Saetersdal, M., Birks, H.J.B., Peglar, S.M., 1998. Predicting changes in Fennoscandian vascular-plant species richness as a result of future climatic change. Journal of Biogeography 25, 111-122.

Schade, G.W., Goldstein, A.H., 2003. Increase of monoterpene emissions from a pine plantation as a result of mechanical disturbances. Geophysical Research Letters 30, 1380.

Schurgers, G., Arneth, A., Holzinger, R., Goldstein, A.H., 2009. Process-based modelling of biogenic monoterpene emissions combining production and release from storage. Atmospheric Chemistry and Physics 9, 3409-3423.

Simpraga, M., Verbeeck, H., Demarcke, M., Joo, E., Pokorska, O., Amelynck, C., Schoon, N., Dewulf, J., Van Langenhove, H., Heinesch, B., Aubinet, M., Laffineur, Q., Muller, J.F., Steppe, K., 2011. Clear link between drought stress, photosynthesis and biogenic volatile organic compounds in Fagus sylvatica L. Atmospheric Environment 45, 5254-5259.

Vuorinen, T., Nerg, A.-M., Syrjala, L., Peltonen, P., Holopainen, J.K., 2007. Epirrita autumnata induced VOC emission of silver birch differ from emission induced by leaf fungal pathogen. Arthropod-Plant Interactions 1, 159-165.

Vuorinen, T., Nerg, A.M., Vapaavuori, E., Holopainen, J.K., 2005. Emission of volatile organic compounds from two silver birch (Betula pendula Roth) clones grown under ambient and elevated CO2 and different O3 concentrations. Atmospheric Environment 39, 1185-1197.