On Normal Fuzzy Submultigroups of a Fuzzy Multigroup

P. A. Ejegwa

Abstract


In this paper, we propose the notion of normal fuzzy submultigroups of a fuzzy multigroup. Some properties of normal fuzzy submultigroups of a fuzzy multigroup are explored and some related results are obtained. It is shown that a fuzzy submultigroup of a fuzzy multigroup is normal if and only if its alpha-cut is a normal subgroup of a given group. The concepts of commutator and normalizer  in fuzzy multigroup setting are introduced and some results are deduced.

Keywords


Fuzzy comultiset, Fuzzy multiset, Fuzzy multigroup, Fuzzy submultigroup, Normal fuzzy submultigroup

Full Text:

PDF

References


Ajmal, N. and I. Jahan (2012). A study of normal fuzzy subgroups and characteristic fuzzy subgroups of a fuzzy group. Fuzzy Information and Engineering 2, 123–143.

Baby, A., T.K. Shinoj and J.J. Sunil (2015). On abelian fuzzy multigroups and order of fuzzy multigroups. Journal of New Theory 5(2), 80–93.

Biswas, R. (1999). An application of Yager’s bag theory in multicriteria based decision making problems. International Journal of Intelligent Systems 14, 1231–1238.

Ejegwa, P.A. (2014). Correspondence between fuzzy multisets and sequences. Global Journal of Science Frontier Research: Mathematics and Decision Science 14(7), 61–66.

Ejegwa, P.A. (2018a). Homomorphism of fuzzy multigroups and some of its properties. Applications and Applied Mathematics 13(1), 114–129.

Ejegwa, P.A. (2018b). On abelian fuzzy multigroups. Journal of Fuzzy Mathematics 26(3), 655–668.

Ejegwa, P.A. (2018c). On fuzzy multigroups and fuzzy submultigroups. Journal of Fuzzy Mathematics 26(3), 641–654.

Malik, D.S., J.N. Mordeson and P.S. Nair (1992). Fuzzy normal subgroups in fuzzy subgroups. Journal of Korean Mathematical Society 29(1), 1–8.

Mashour, A.S., M.H. Ghanim and F.I. Sidky (1990). Normal fuzzy subgroups. Univ. u Novom Sadu Zb. Rad. Prirod.- Mat. Fak. Ser. Mat. 20(2), 53–59.

Miyamoto, S. (1996). Basic operations of fuzzy multisets. Journal of Japan Society of Fuzzy Theory and Systems

(4), 639–645.

Miyamoto, S. and K. Mizutani (2004). Fuzzy multiset model and methods for nonlinear document clustering for information retrieval. Springer-Verlag Berlin Heidelberg.

Mizutani, K., R. Inokuchi and S. Miyamoto (2008). Algorithms of nonlinear document clustering based on fuzzy multiset model. International Journal of Intelligent Systems 23, 176–198.

Mordeson, J.M., K.R. Bhutani and A. Rosenfeld (1996). Basic operations of fuzzy multisets. Journal of Japan Society of Fuzzy Theory and Systems 8(4), 639–645.

Mukherjee, N.P. and P. Bhattacharya (1984). Fuzzy normal subgroups and fuzzy cosets. Information Science 34, 225– 239.

Rosenfeld, A. (1971). Fuzzy subgroups. Journal of Mathematical Analysis and Applications 35, 512–517.

Seselja, B. and A. Tepavcevic (1997). A note on fuzzy groups. Yugoslav Journal of Operation Research 7(1), 49–54. Shinoj, T.K., A. Baby and J.J. Sunil (2015). On some algebraic structures of fuzzy multisets. Annals of Fuzzy Mathematics and Informatics 9(1), 77–90.

Syropoulos, A. (2012). On generalized fuzzy multisets and their use in computation. Iranian Journal of Fuzzy Systems

(2), 113–125.

Wu, W. (1981). Normal fuzzy subgroups. Fuzzy Mathematics 1, 21–30.

Yager, R.R. (1986). On the theory of bags. International Journal of General Systems 13, 23–37. Zadeh, L.A. (1965). Fuzzy sets. Information and Control 8, 338–353.


Refbacks

  • There are currently no refbacks.