### On a Subclass of Harmonic Univalent Functions Based on Subordination

#### Abstract

In this paper, we introduce a new class of harmonic univalent functions defined by subordination with a linear operator. Certain properties of this class are discussed.

#### Keywords

#### Full Text:

PDF#### References

Al-Oboudi, F. M. (2004). On univalent functions defined by a generalized Salagean operator. International Journal of Mathematics and Mathematical Sciences 27, 1429–1436.

Bayram, H. and S. Yalcin (2017). A subclass of harmonic univalent functions defined by a linear operator. Palestine Journal of Mathematics 6, 320–326.

Clunie, J. and T. Sheil-Small (1984). Harmonic univalent functions. Ann. Acad. Sci. Fenn. Ser. A I Math. 9, 3–25.

Dziok, J. (2015a). Classes of harmonic functions defined by subordination. Abstr. Appl. Anal.

Dziok, J. (2015b). On Janowski harmonic functions. J. Appl. Anal. 21, 99–107.

Dziok, J., J. M. Jahangiri and H. Silverman (2016). Harmonic functions with varying coefficients. Journal of Inequal- ities and Applications.

Jahangiri, J.M. (1999). Harmonic functions starlike in the unit disk. J. Math. Anal. Appl. 235, 470–477.

Jahangiri, J.M., G. Murugusundaramoorthy and K. Vijaya (2002). Salagean-type harmonic univalent functions. South

J. Pure Appl. Math 2, 77–82.

Silverman, H. (1998). Harmonic univalent functions with negative coefficients. J. Math. Anal. Appl. 220, 283–289.

Silverman, H. and E. M. Silvia (1999). Subclasses of harmonic univalent functions. N. Z. J. Math. 28, 275–284.

Salagean, G.S. (1983). Subclasses of univalent functions. Lecture Notes in Math. Springer- Verlag Heidelberg

, 362–372.

Yasar, E. and S. Yalcin (2012). Generalized Salagean-type harmonic univalent functions. Stud. Univ. Babes¸-Bolyai Math. 57(3), 395–403.

### Refbacks

- There are currently no refbacks.