New Subclasses of Analytic and Bi-Univalent Functions Involving a New Integral Operator Defined by Polylogarithm Function

Arzu Akgül

Abstract


In the present investigation, we introduce two new subclasses of the function class σ of bi-univalent functions in the open unit disc. Also we find coefficient estimates on the coefficients |a2| and |a3| for functions in the function class and several related classes are also considered and connections to earlier known results are made.


Keywords


Analytic functions, univalent functions, bi-univalent functions, coefficient bounds

Full Text:

PDF

References


AL-Shaqsi, K. (2014). Strong differential subordinations obtained with new integral operator defined by polylogarithm function. International Journal of Mathematics and Mathematical Sciences Vol2014(Art ID 260198), 6 pages.

Bateman, H. (1953). Higher transendental functions, vol. 1. Mc Graw-Hill, New York, NY, USA.

Brannan, D. A. and J. G. Clunie (1980). Aspects of comtemporary complex analysis. In: Proceedings of the NATO Advanced Study Instute Held at University of Durham: July 1-20, 1979. New York: Academic Press.

Brannan, D.A. and T.S. Taha (1986). On some classes of bi-univalent functions. Studia Univ. Babes¸-Bolyai Math. 31(2), 70–77.

Duren, P. L. (1983). Univalent Functions. Grundlehren der Mathematischen Wissenschaften, Springer, New York, NY, USA, 259.

Frasin, B.A. and M.K. Aouf (2011). New subclasses of bi-univalent functions. Applied Mathematics Letters 24(9), 1569 – 1573.

Lerch, M. (1887). Note sur la fonction k(w, x, s) =. Acta Mathematica 11(1-4), 19–24.

Lewin, M. (1967). On a coefficient problem for bi-univalent functions. Proceedings of the American Mathematical Society 18(1), 63–68.

Netanyahu, E. (1969). The minimal distance of the image boundary from the orijin and the second coefficient of a univalent function in |z| < 1,. Archive for Rational Mechanics and Analysis 32(2), 100–112.

Pommerenke, Christian. and Gerd. Jensen (1975). Univalent functions / Christian Pommerenke, with a chapter on quadratic differentials by Gerd Jensen. Vandenhoeck und Ruprecht Gottingen.

Ponnusamy, S. and S. Sabapathy (1996). Polylogarithms in the theory of univalent functions. Results in Mathematics 30(1), 136–150.

Porwal, Saurabh and M. Darus (2013). On a new subclass of bi-univalent functions. Journal of the Egyptian Mathe- matical Society 21(3), 190 – 193.

Salagean, Grigore Stefan (1983). Subclasses of univalent functions. pp. 362–372. Springer Berlin Heidelberg. Berlin, Heidelberg.

Srivastava, H.M., A.K. Mishra and P. Gochhayat (2010). Certain subclasses of analytic and bi-univalent functions.

Applied Mathematics Letters 23(10), 1188 – 1192.

Xu, Qing-Hua, Hai-Gen Xiao and H.M. Srivastava (2012a). A certain general subclass of analytic and bi-univalent functions and associated coefficient estimate problems. Applied Mathematics and Computation 218(23), 11461 – 11465.

Xu, Qing-Hua, Ying-Chun Gui and H.M. Srivastava (2012b). Coefficient estimates for a certain subclass of analytic and bi-univalent functions. Applied Mathematics Letters 25(6), 990 – 994.


Refbacks

  • There are currently no refbacks.