
Scientific and  Technical  Bulletin  Series: Electrotechnics, Electronics, Automatic 

Control and Computer Science, Vol. 5, No. 4, 2008, ISSN 1584-9198 

 

Marius M. B LA   
„Aurel Vlaicu” University of Arad, 

Engineering Faculty  

Bd. Revolu iei nr. 77, 310130, Arad, 

Romania  

E-mail: marius.balas@ieee.org  

 

 

 

 

Valentina E. B LA   
„Aurel Vlaicu” University of Arad, 

Engineering Faculty  

Bd. Revolu iei nr. 77, 310130, Arad, 

Romania  

E-mail: balas@inext.ro  

 

 

 

 

 

 

 

 

 

APPLYING THE CONSTANT TIME TO 

COLLISION CRITERION IN SWARM 

SYSTEMS  
 

NOTE: This paper was presented at the International 

Symposium “Research and Education in an Innovation Era”, 

Engineering Sciences, November 20-21, 2008, "Aurel Vlaicu" 

University of Arad, Romania 

 15



Scientific and  Technical  Bulletin  Series: Electrotechnics, Electronics, Automatic 

Control and Computer Science, Vol. 5, No. 4, 2008, ISSN 1584-9198 

 

ABSTRACT:  
 

The paper is making a short introduction into the field of 

the swarm intelligent robots and is proposing a new approach 

for the self-organizing swarms, based on the criterion of the 

constant time to collision. This criterion is imposing an optimal 

distance between moving particles, such way that the times to 

collision between particles are constant, for any speed. The same 

time to collision is imposed to the whole swarm. The imposed 

time to collision and therefore the distance gaps between the 

particles can be adjusted. Such way each member of a moving 

swarm can find by itself a position that is optimizing the 

structure and the dimensions of the swarm, according to its 

speed. A simulation is provided for a simple case: the Indian 

run. 
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INTRODUCTION.  

THE SWARM INTELLIGENCE 
 

The Swarm Intelligent paradigm (SI) [Kennedy and 

Eberhart 2001, Clerc 2006] is inspired from the social dynamics 

and emergent behavior that arise in socially organized colonies. 

The importance of such a concept in the control theory is linked 

to the idea of the colonies of robots [1], [2], etc. The aim is to 

replace an individual exploring, working or fighting robot 

(which is complicate, expensive, and exposed to different failure 

mechanisms) with a group of much smaller robots (simple, 

cheap, replaceable), that will act in a self-organized way, 

inspired by social behavior patterns of organisms that live and 

interact within large groups. A mathematical concept that is sup-

porting this approach is the Particle Swarm Optimization 

algorithm (PSO), which may incorporate swarming behaviors 

observed to birds, fish, bees, ants and even human social 

behavior [1], [3], [4]. Our purpose is to introduce in swarm 

systems an optimization criterion that was previously used in the 

Automate Cruse Control: the Constant Time to Collision 

(CTTC). 

 

 

AN INTRODUCTION INTO THE PARTICLE 

SWARM OPTIMIZATION 
 

PSO is learning algorithm, exploiting a population of 

individuals to probe promising regions of the search space. In this 

context, the population is called swarm and the individuals are called 

particles. Each particle moves with an adaptable velocity within the 

search space, and retains a memory of the best position it ever 

encountered. In the global variant of PSO, the best position ever 

attained by all individuals of the swarm is communicated to all the 

particles. In the local variant, each particle is assigned to a 
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topological neighborhood consisting of a prespecified number of 

particles. In this case, the best position ever attained by the particles 

that comprise the neighborhood is communicated among them [4]. 

Assume a D–dimensional search space, S  
D
, and a 

swarm consisting of N particles. The i–th particle is in effect a 

D–dimensional vector Xi = (xi1, xi2, … ,  xiD)
T

 S. The velocity of 

this particle is also a D–dimensional vector, Vi = (vi1, vi2, … ,  

viD)
T

 S. The best previous position encountered by the i–th 

particle is a point in S, denoted by Pi = (Pi1, Pi2, … ,  PiD)
T

 S. 

Assume gi to be the index of the particle that attained the best 

previous position among all the particles in the neighborhood of 

the i–th particle, and t the iteration counter. Then, the swarm is 

manipulated by the following equations [5]: 

 

Vi(t + 1) =  [wVi(t) + c1 r1 (Pi(t) - Xi(t)) + c2 r2 (Pgi (t) - Xi(t))],    (1) 

 
Xi(t + 1) = Xi(t) + Vi(t + 1),                                                                (2) 

 

where i = 1, … , N; c1 and c2 are two parameters called cognitive 

and social parameters respectively; r1, r2, are random numbers 

uniformly distributed within [0, 1], and gi is the index of the particle 

that attained either the best position of the whole swarm (global ver-

sion), or the best position in the neighborhood of the i–th particle 

(local version). The parameters  and w are called constriction factor 

and inertia weight respectively, and they are used as mechanisms for 

the control of the velocity’s magnitude, corresponding to the two 

main PSO versions. The value of the constriction factor is derived 

analytically [5]. On the other hand, the inertia weight, w, is computed 

empirically, taking into consideration that large values encourage 

global exploration, while small values promote local exploration. 

According to a rule of thumb, an initial value of w around 1.0 and a 

gradual decline towards 0 is considered a proper choice. In general, 

the constriction factor version of PSO is faster than the one with the 

inertia weight, although in some applications its global variant suffers 

from premature convergence. Regarding the social and cognitive 

parameter, the default values c1 = c2 = 2 have been proposed. The 
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initialization of the swarm and the velocities is usually performed 

randomly and uniformly in the search space, although more 

sophisticated initialization techniques can enhance the overall 

performance of the algorithm [4]. 

 

 

THE CONSTANT TIME TO COLLISION 

CRITERION 
 

As shown before, swarm systems may be abstractized 

and used in automate learning. In this paper we will come back 

to the original sense of the concept: swarm system = a group of 

interacting automobile objects. Our goal is to find an algorithm 

that is able to optimize the swarm movements, by minimizing 

the distance between individuals, with respect to a common 

collision risk. The first step in this direction is to investigate one 

of the simplest swarm models: the Indian run. The Indian run 

may be observed in nature at many species of ants, birds, or 

mammals (elephants for instance), as well as in different social 

activities, namely in sports: cycling, athletics, etc. We will 

associate the Indian run to a concept belonging to the Automate 

cruise control: the Constant Time to Collision (CTTC) criterion 

[6], [7]. TTC is the time before two following cars (Car2 is follow-

ing Car1) are colliding, assuming unchanged speeds of both vehicles: 

                          
12

21

vv

d
TTC                                          (1) 

where v1 and v2 are the speeds of the vehicles and d21 the 

distance gap between them. 

CTTC consists in imposing stabilized TTCs by means of 

the Car2 cruise controller. The on-line TTC control is not 

convenient because when the two cars have the same speed the 

TTC’s denominator is turning null: v2 - v1= 0. That is why CTTC 

must be implemented off-line, with the help of di(v2) mappings 

(fig. 1). The CTTC implementation by di(v2) distance-gap planners 

is possible because a distance gap planner using TTC will produce 
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CTTC. We studied this method by computer simulations, using a 

Matlab-Simulink model of the tandem Car1-Car2 [6].  

 
 

 

 

 

 

Fig. 1. di(v2) mappings 

for three different 

TTC 

 

 

 

 

 

The distance-gap planners are designed by means of a 

computer simulation, as follows. The simulation scenario con-

sists in braking Car1 until the car is immobilized, starting from a 

high initial speed. A TTC controller is driving the Car2 

traction/braking force such way that during the whole simulation 

TTC is stabilized to a desired constant value. The continuous 

braking allow us to avoid the v2-v1=0 case. We will use the 

recorded d mapping as the desired di(v2) planner for the given 

TTC. The Fig. 1 planners are determined for three TTC values: 

4s, 7s and 10s. The Fig. 2 is presenting the computer model. 

Applying CTTC brings two obvious advantages: 

- a constant collision risk for each vehicle involved; 

- the possibility to control the traffic flow on extended road 

sections, if each vehicle will apply the same TTC that is 

currently recommended by the Traffic Management Center: a 

long TTC means low traffic flow and higher safety while a short 

TTC means high traffic flow and higher risk. 
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Fig. 2. A cruise control system with distance controller and CTTC di(v2) planner 

 

 

A CTTC PLATOON SIMULATION 
 

 

The following Simulink-Matlab model allows us to 

simulate the behavior of a CTTC platoon, running in Indian style 

(see Fig. 3). The elements of the platoon are five identical cars, 

the first one driven by a driver. Each car is provided with a PID 

distance controller that is following as close as possible the 

imposed distance di(v), and therefore the imposed TTC. The 

imposed TTC is variable: 10s for the first 200 seconds of the 

simulation and 7 s for the last 120 seconds, linked by a ramp 

transition. All the cars are starting from the same spot. 

The speed of the first car, Car1, is presented in Fig. 4. 

The distances between the cars and the overall length of the 

platoon are presented in fig. 5. One can easily observe the 

continuous variation of the platoon’s length: 

a) with the speed (for the first 200s), and  

 21

b) with the imposed TTC (for the last 220s).  
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Fig. 6 is showing the initialization of the platoon, which is 

perfectible.  

The simulation is illustrating the simplest case of a 

swarm movement: the longitudinal drive. The next stages of this 

research should extend the method for the 2D and 3D cases, and 

refine the control algorithms, that will improve the dynamics of 

the platoon. 
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Fig. 4. The speed of the first car 

Fig. 5. The distances between cars and the length of the platoon 
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CONCLUSIONS 
 

The constant time to collision criterion can stand for an 

optimization method for moving swarm systems. The particles 

must preserve an optimized distance with their neighbors, such 

way that the time to collision is constant and adjustable for all 

the swarm. The distances between particles are continuously 

adapted to the actual speed and the dimensions of the swarm are 

minimized. In the same time, the collision risk, that depends of 

the imposed time to collision is evenly distributed. The method 

is illustrated by a simulation of an 5 automobiles platoon. 
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Fig. 6. The initialization of the platoon 
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