On Certain Properties for Hadamard Product of Uniformly Univalent Meromorphic Functions with Positive Coefficients

R. M. EL-Ashwaha,*, M. E. Drbuka

aDepartment of Mathematics, Faculty of Science, Damietta University, New Damietta 34517, Egypt

Abstract

In this paper we study some results concerning the Hadamard product of certain classes related to uniformly starlike and convex univalent meromorphic functions with positive coefficients.

Keywords: Univalent, meromorphic, starlike, convex, uniformly, Hadamard product.

2010 MSC: 30C45.

1. Introduction

Throughout this paper, let the functions of the form

\[\varphi(z) = c_1 z - \sum_{n=2}^{\infty} c_n z^n \quad (c_1 > 0; c_n \geq 0), \]

and

\[\psi(z) = d_1 z - \sum_{n=2}^{\infty} d_n z^n \quad (d_1 > 0; d_n \geq 0) \]

which are analytic and univalent in the unit disc

\[U = \{z : z \in \mathbb{C} \text{ and } |z| < 1\}; \]

also, let

\[f(z) = \frac{a_0}{z} + \sum_{n=1}^{\infty} a_n z^n \quad (a_0 > 0; a_n \geq 0), \]

*Corresponding author

Email addresses: r_elashwah@yahoo.com (R. M. EL-Ashwah), drbuk2@yahoo.com (M. E. Drbuk)
Lemma 1.1. Let the function f defined by (1.3). Then $f \in U\Sigma S^*_0(\alpha, \beta)$ if and only if

$$\sum_{n=1}^{\infty} [n(1 + \beta) + (\alpha + \beta)]a_n \leq (1 - \alpha)a_0. \quad (1.11)$$
Lemma 1.2 (3). Let the function \(f \) defined by (1.3). Then \(f \in U\Sigma C_0 (\alpha, \beta) \) if and only if
\[
\sum_{n=1}^{\infty} n[n(1+\beta) + (\alpha + \beta)]a_n \leq (1 - \alpha)a_0.
\]

Definition 1.1. Let the function \(f \) defined by (1.3). Then \(f \in U\Sigma S_m (\alpha, \beta) \) if and only if
\[
\sum_{n=1}^{\infty} n^m[n(1+\beta) + (\alpha + \beta)]a_n \leq (1 - \alpha)a_0,
\]
where \(0 \leq \beta < \infty \), \(0 \leq \alpha < 1 \) and \(m \) any positive integer number.

We note that \(U\Sigma S_1 (\alpha, \beta) = U\Sigma C_0 (\alpha, \beta) \) and \(U\Sigma S_0 (\alpha, \beta) \) is equivalent to \(U\Sigma S_0^* (\alpha, \beta) \). Further, \(U\Sigma S_m (\alpha, \beta) \subset U\Sigma S_r (\alpha, \beta) \) if \(m > r \geq 0 \), the containment being proper. Whence, for any positive integer \(m \), we have the inclusion relation
\[
U\Sigma S_m (\alpha, \beta) \subset U\Sigma S_{m-1} (\alpha, \beta) \subset \ldots \subset U\Sigma S_2 (\alpha, \beta) \subset U\Sigma C_0 (\alpha, \beta) U\Sigma S_0^* (\alpha, \beta).
\]

Also, we note that for nonnegative real number \(m \) the class \(U\Sigma S_m (\alpha, \beta) \) is nonempty as the functions of the form
\[
f(z) = \frac{a_0}{z} + \sum_{n=1}^{\infty} \frac{(1 - \alpha)a_0}{n^m[n(1+\beta) + (\alpha + \beta)]} \lambda_n z^n,
\]
where \(a_0 > 0 \), and \(\sum_{n=1}^{\infty} \lambda_n \leq 1 \), satisfy the inequality (1.13). For the functions
\[
f_j(z) = \frac{1}{z} + \sum_{n=1}^{\infty} a_{n,j} z^n (a_{n,j} \geq 0; j = 1, 2).
\]

We denote by \((f_1 * f_2)(z)\) the Hadamard product (or convolution) of functions \(f_1(z) \) and \(f_2(z) \), that is
\[
(f_1 * f_2)(z) = \frac{1}{z} + \sum_{n=1}^{\infty} a_{n,1} a_{n,2} z^n.
\]

Similarly, we can define the Hadamard product of more than two functions. The quasi-Hadamard product of two or more functions \(\varphi(z) \) and \(\psi(z) \) given by (1.1) and (1.2), (see (Kumar, 1987)).
\[
(\varphi * \psi)(z) = c_1 d_1 z - \sum_{n=2}^{\infty} c_n d_n z^n
\]

In this paper, we can discuss certain results concerning the Hadamard product of functions in the classes \(U\Sigma S_0^* (\alpha, \beta) \), \(U\Sigma S_m (\alpha, \beta) \) and \(U\Sigma C_0 (\alpha, \beta) \).
2. Main results

Theorem 2.1. Let the functions $f_i(z)$ defined by (1.4) be in the class $UΣC_0 (α, β)$ for every $i = 1, 2, \ldots, m$, and suppose that the functions $g_j(z)$ defined by (1.6) be in the class $UΣS^*_0 (α, β)$ for every $j = 1, 2, \ldots, q$. Then the Hadamard product $(f_1 * f_2 \cdots * f_m * g_1 * g_2 \cdots g_q)(z)$ belongs to the class $UΣS_{2m+q-1} (α, β)$.

Proof. It is sufficient to show that

$$
\sum_{n=1}^{\infty} \left\{ n^{2m+q-1} \{ n(1 + β) + (α + β) \} \left[\prod_{i=1}^{m} a_{n,i} \prod_{j=1}^{q} b_{n,j} \right] \right\} \leq (1 - α) \left[\prod_{i=1}^{m} a_{0,i} \prod_{j=1}^{q} b_{0,j} \right].
$$

(2.1)

Since $f_i(z) \in UΣC_0 (α, β)$, we get

$$
\sum_{n=1}^{\infty} n \{ n(1 + β) + (α + β) \} a_{n,i} \leq (1 - α) a_{0,i} \quad (i = 1, 2, \ldots, m).
$$

(2.2)

Therefore,

$$
a_{n,i} \leq \frac{(1 - α)}{n \{ n(1 + β) + (α + β) \}} a_{0,i}
$$

(2.3)

which implies that

$$
a_{n,i} \leq n^{-2} a_{0,i} \quad (i = 1, 2, \ldots, m).
$$

(2.4)

Similarly, for $g_j(z) \in UΣS^*_0 (α, β)$, we obtain

$$
\sum_{n=1}^{\infty} \{ n(1 + β) + (α + β) \} b_{n,j} \leq (1 - α) b_{0,j},
$$

(2.5)

for $j = 1, 2, \ldots, q$. Hence we have

$$
b_{n,j} \leq n^{-1} b_{0,j} \quad (j = 1, 2, \ldots, q).
$$

(2.6)

Using (2.4) for $i = 1, 2, \ldots, m$, (2.6) for $j = 1, 2, \ldots, q - 1$, and (2.5) for $j = q$, we have

$$
\sum_{n=1}^{\infty} \left\{ n^{2m+q-1} \{ n(1 + β) + (α + β) \} \left[\prod_{i=1}^{m} a_{n,i} \prod_{j=1}^{q} b_{n,j} \right] \right\}
\leq \sum_{n=1}^{\infty} \left\{ n^{2m+q-1} \{ n(1 + β) + (α + β) \} \left[n^{-2m} n^{-(q-1)} \prod_{i=1}^{m} a_{0,i} \prod_{j=1}^{q-1} b_{0,j} \right] b_{n,q} \right\}
= \left[\prod_{i=1}^{m} a_{0,i} \prod_{j=1}^{q-1} b_{0,j} \right] \sum_{n=1}^{\infty} \left\{ n \{ n(1 + β) + (α + β) \} b_{n,q} \right\} \leq (1 - α) \left[\prod_{i=1}^{m} a_{0,i} \prod_{j=1}^{q} b_{0,j} \right].
$$

Hence $(f_1 * f_2 \cdots * f_m * g_1 * g_2 \cdots g_q)(z) \in UΣS_{2m+q-1} (α, β)$. The proof of Theorem 1 is completed. }
Theorem 2.2. Let the functions $f_i(z)$ defined by (1.4) be in the class $USC_0(\alpha, \beta)$ for every $i = 1, 2, ..., m$, then the Hadamard product $(f_1 * f_2 * ... * f_m)(z)$ belongs to the class $USS_{2m-1}(\alpha, \beta)$.

Proof. It is sufficient to show that

$$
\sum_{n=1}^{\infty} \left\{ n^{2m-1} \{ \sum_{i=1}^{m} a_{n,i} \} \right\} \leq (1 - \alpha) \left\{ \prod_{i=1}^{m} a_{0,i} \right\}.
$$

(2.7)

Since $f_i(z) \in USC_0(\alpha, \beta)$, the inequalities (2.1) and (2.2) hold for every $i = 1, 2, ..., m$.

Using (2.2) for $i = 1, 2, ..., m - 1$, and (2.1) for $i = 1, 2, ..., m$, we have

$$
\sum_{n=1}^{\infty} \left\{ n^{2m-1} \{ \sum_{i=1}^{m} a_{n,i} \} \right\} \leq \sum_{n=1}^{\infty} \left\{ n^{2m-1} \{ \sum_{i=1}^{m} a_{n,i} \} \right\}
$$

$$
= \left\{ \prod_{i=1}^{m} a_{0,i} \right\} \sum_{n=1}^{\infty} \left\{ n^{2m-1} \{ \sum_{i=1}^{m} a_{n,i} \} \right\} \leq (1 - \alpha) \left\{ \prod_{i=1}^{m} a_{0,i} \right\}.
$$

Hence $(f_1 * f_2 * ... * f_m)(z) \in USS_{2m-1}(\alpha, \beta)$. The proof of Theorem 2 is completed. \(\square\)

Theorem 2.3. Let the functions $f_i(z)$ defined by (1.4) be in the class $USS_0^*(\alpha, \beta)$ for every $i = 1, 2, ..., m$, then the Hadamard product $(f_1 * f_2 * ... * f_m)(z)$ belongs to the class $USS_{m-1}(\alpha, \beta)$.

Proof. Since $f_i(z) \in USS_0^*(\alpha, \beta)$, we have

$$
\sum_{n=1}^{\infty} \left\{ n^{2m-1} \{ \sum_{i=1}^{m} a_{n,i} \} \right\} \leq (1 - \alpha) a_{0,i},
$$

(2.8)

for every $i = 1, 2, ..., m$. Therefore, we obtain $a_{n,i} \leq \frac{(1 - \alpha)}{m(1 + \beta + (\alpha + \beta))} a_{0,i}$ which implies that

$$
a_{n,i} \leq n^{-1} a_{0,i} \quad (i = 1, 2, ..., m).
$$

(2.9)

Using (2.9) for $i = 1, 2, ..., m - 1$, and (2.8) for $i = 1, 2, ..., m$, we have

$$
\sum_{n=1}^{\infty} \left\{ n^{2m-1} \{ \sum_{i=1}^{m} a_{n,i} \} \right\} \leq \sum_{n=1}^{\infty} \left\{ n^{2m-1} \{ \sum_{i=1}^{m} a_{n,i} \} \right\}
$$

$$
= \left\{ \prod_{i=1}^{m} a_{0,i} \right\} \sum_{n=1}^{\infty} \left\{ n^{2m-1} \{ \sum_{i=1}^{m} a_{n,i} \} \right\} \leq (1 - \alpha) \left\{ \prod_{i=1}^{m} a_{0,i} \right\}.
$$

Hence $(f_1 * f_2 * ... * f_m)(z) \in USS_{m-1}(\alpha, \beta)$, which completes the proof of Theorem 3. \(\square\)

Remark. Taking $\beta = 0$ in our main results, we obtain the results obtained by Mogra (Mogra, 1991).
References

